精英家教网 > 高中数学 > 题目详情
若关于x的不等式[x-(3-a)](x-2a)<0的解集是A,函数y=
1
-x2+3x-2
的定义域是B,若A∪B=A,求实数a的取值范围.
分析:求解一元二次不等式化简集合B,由A∪B=A可知A非空,然后分a与1的大小关系求解集合A,利用B是A的子集列式求解a的范围.
解答:解:由-x2+3x-2>0,得1<x<2.
所以B=(1,2).
由[x-(3-a)](x-2a)<0得解集是A,且A∪B=A,
所以A≠∅,且B⊆A,
若a>1,解[x-(3-a)](x-2a)<0,得3-a<x<2a,A=(3-a,2a),
由B⊆A,得
3-a≤1
2a≥2
3-a≥1
2a≤2
,所以a≥2;
若a<1,解[x-(3-a)](x-2a)<0,得2a<x<3-a,A=(2a,3-a),
由B⊆A,得
2a≤1
3-a≥2
,所以a≤
1
2

所以实数a的取值范围是a≤
1
2
或a≥2.
点评:本题考查了一元二次不等式的解法,考查了数学转化思想方法和分类讨论的数学思想方法,考查了计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与两坐标轴的交点处的切线相互平行.若关于x的不等式
x-m
g(x)
x
对任意不等于1的正实数都成立,则实数m的取值集合是
{1}
{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•潍坊二模)若关于x的不等式|x+2|+|x-1|>log2a的解集为R,则实数a的取值范围是
(0,8)
(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)设a>0,若关于x的不等式x+
a
x-1
≥5在x∈(1,+∞)恒成立,则a的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉安二模)若关于x的不等式|x+1|+|x-m|>4的解集为R,则实数m的取值范围
{m|m>3或m<-5}
{m|m>3或m<-5}

查看答案和解析>>

同步练习册答案