精英家教网 > 高中数学 > 题目详情
已知映射f:A→B,其中A=B=R,对应法则:f:x→y=x2-2x+2若对实数k∈B,在集合A中不存在原象,则k的取值范围是(  )
分析:设x2-2x+2=k,据题意知此方程应无实根,用判别式表示方程无实根,即判别式小于0,解出k的值.
解答:解:设x2-2x+2=k,据题意知此方程应无实根
∴△=(-2)2-4•(2-k)<0,
1-2+k<0
∴k<1,
故选B
点评:本题考查映射的意义,本题解题的关键是利用一元二次方程的解的判别式表示出符合题意的不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知映射f:A→B,其中集合A={-2,-1,1,2,3},集合B中的元素都是A中的元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是:a2-1,则集合B中的元素的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知映射f:A→B,A=B=R,对应法则f:x→y=-x2+2x,对于实数k∈B在A中没有原象,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知映射f:A→B,其中A=B=R,对应法则f:x→y=|x|
1
2
,若对实数k∈B,在集合A中不存在元素x使得f:x→k,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知映射f:A→B,集合A中的元素x与集合B中的元素y=2x-3对应,则B中元素9的原象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4,},且对任意a∈A,在B中和它对应的元素是|a|,则集合B中元素的个数最少是
4
4

查看答案和解析>>

同步练习册答案