精英家教网 > 高中数学 > 题目详情
15.函数f(x)=logax的图象如图所示,则a的取值可能是(  )
A.10B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 可判断函数f(x)=logax在其定义域上是增函数,从而可得.

解答 解:∵函数f(x)=logax的图象从左向右看是上升的,
∴函数f(x)=logax在其定义域上是增函数,
∴a>1,
故选:A.

点评 本题考查了函数的图象与函数的性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设$f(x)=\frac{sinx}{x}$,则$f'(\frac{π}{2})$=$-\frac{4}{π^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求使不等式 $\sqrt{(x-2)({x}^{2}一4)}$=(2一x)$\sqrt{x+2}$成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在直角坐标系中,曲线C1:$\left\{\begin{array}{l}{x=5cosθ}\\{y=3sinθ}\end{array}\right.$ (其中θ为参数),直线C2:$\left\{\begin{array}{l}{x=\frac{4}{5}t-4}\\{y=\frac{3}{5}t}\end{array}\right.$(其中t为参数).点F(-4,0),曲线C1与直线C2相交于点A、B,求|FA|•|FB|的值. 
(2)在极坐标系中,直线l:ρcos(θ-$\frac{π}{3}$)=2,与以点M(4,π)为圆心,以5为半径的圆相交于P、Q两点,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知A(3,-1),B(5,-2),点P在直线x+y=0上,若使|PA|+|PB|取最小值,则点P的坐标是(  )
A.(1,-1)B.(-1,1)C.($\frac{13}{5}$,-$\frac{13}{5}$)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.根据表格内容填空:
x-202
y0-40
(1)写出经过这些点的二次函数解析式y=x2-4;
(2)写出所对应的一元二次方程的解±2;
(3)写出当y>0时的一元二次不等式的解集{x|x<-2,或x>2};;
(4)写出当y≤0时的一元二次不等式的解集{x|-2≤x≤2};;
(5)写出当y≤2时的一元二次不等式的解集{x|-$\sqrt{6}$≤x≤$\sqrt{6}$};;
(6)写出当y>1时的一元二次不等式的解集{x|x<-$\sqrt{5}$,或x>$\sqrt{5}$};.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在直角坐标系内,O为原点,点A,B坐标分别为(1,0),(0,2),当实数p,q满足$\frac{1}{p}$+$\frac{1}{q}$=1时,若点C,D分别在x轴,y轴上,且$\overrightarrow{OC}$=p$\overrightarrow{OA}$,$\overrightarrow{OD}$=q$\overrightarrow{OB}$,则A线CD恒过一个定点,这个定点的坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若1gx-1gy=m,则1g($\frac{x}{4}$)3-lg${(\frac{y}{4})}^{3}$=3m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=1+sinx,(x∈[-π,π])的图象与直线y=$\frac{3}{2}$的交点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案