【题目】已知函数在上是增函数.
求实数的值;
若函数有三个零点,求实数的取值范围.
【答案】(1);(2)
【解析】
根据分段函数的单调性,结合导数判断函数在上单调递增即可;
讨论时不满足题意,则,根据分段函数单调可知在时,已经存在两个零点,在等价为当时,有且只有一个零点,利用参变分离法结合图象进行求解即可。
解:当时,是增函数,且,
故当时,为增函数,即恒成立,
当时,函数的导数恒成立,
当时,,此时相应恒成立,即恒成立,即恒成立,
当时,,此时相应恒成立,即恒成立,即恒成立,
则,即.
若,则在上是增函数,此时最多有一个零点,不可能有三个零点,则不满足条件.
故,
当时,有一个零点,
当时,,故0也是故的一个零点,
故当时,有且只有一个零点,即有且只有一个解,
即,得,,
则,在时有且只有一个根,
即与函数,在时有且只有一个交点,
,
由得,即得,得,此时函数递增,
由得,即得,得,此时函数递减,
即当时,函数取得极小值,此时极小值为
,
,
作出的图象如图,
要使与函数,在时有且只有一个交点,
则或,
即实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,底面是边长为4的正三角形,,底面,点分别为,的中点.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某居民最近连续几年的月用水量进行统计,得到该居民月用水量单位:吨的频率分布直方图,如图一.
根据频率分布直方图估计该居民月平均用水量;
已知该居民月用水量T与月平均气温单位:的关系可用回归直线模拟年当地月平均气温t统计图如图二,把2017年该居民月用水量高于和低于的月份分为两层,用分层抽样的方法选取5个月,再从这5个月中随机抽取2个月,这2个月中该居民有个月每月用水量超过,视频率为概率,求出.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆:的左、右焦点分别为,轴,直线交轴于点,,为椭圆上的动点,的面积的最大值为1.
(1)求椭圆的方程;
(2)过点作两条直线与椭圆分别交于且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.
(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为__________;
(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间内,按,,,,,分成6组,其频率分布直方图如图所示.
(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”;
男 | 女 | 合计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
合计 | 100 |
(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:
网购总次数 | 支付宝支付次数 | 银行卡支付次数 | 微信支付次数 | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为,求的数学期望.
附:观测值公式:
临界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批草莓中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
须数(个) | 10 | 5 | 20 | 15 |
(1)根据频数分布表计算草莓的重量在的频率;
(2)用分层抽样的方法从重量在和的草莓中共抽取5个,其中重量在的有几个?
(3)从(2)中抽出的5个草莓中任取2个,求重量在和中各有1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】义乌国际马拉松赛,某校要从甲乙丙丁等人中挑选人参加比赛,其中甲乙丙丁人中至少有人参加且甲乙不同时参加,丙丁也不同时参加,则不同的报名方案有( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com