精英家教网 > 高中数学 > 题目详情
18.不等式x2-2x+3<0的解集是(  )
A.{x|-1<x<3}B.{x|-3<x<1}C.{x|x<-3或x>1}D.

分析 根据题意,对x2-2x+3变形分析可得方程x2-2x+3=0无解,由一元二次不等式的解法分析可得答案.

解答 解:根据题意,x2-2x+3=(x-1)2+2,
分析易得方程x2-2x+3=0无解,
则不等式x2-2x+3<0的解集∅;
故选:D.

点评 本题考查了求一元二次不等式的解集的问题,解题时应先判定对应方程解的情况,是容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.数列{an}满足:a1=2,an+1=a1+a2+…+an+6,(n∈N*).
(1)判断{an}是不是等比数列,并说明理由;
(2)令bn=log2 an,若x<$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$<y对一切n∈N*成立,求x和y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)设实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,求证:$\frac{a}{x}$+$\frac{c}{y}$=2;
(2)△ABC的三边a,b,c的倒数成等差数列,求证:B<$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下面给出了关于复数的四种类比推理:
①若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;
②复数的加减法运算可以类比多项式的加减法运算法则
③由实数a绝对值的性质|a|2=a2类比得到复数z的性质|z|2=z2
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比得到的结论错误的是(  )
A.①③B.②④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.f(x)=sin2x+cos2x的周期为(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)在定义域[-1,1]上单调递减,又当a,b∈[-1,1],且a+b=0时,f(a)+f(b)=0.
(Ⅰ)证明:f(x)是奇函数; 
(Ⅱ)求不等式f(1-m)+f(1-m2)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设不等式组$\left\{\begin{array}{l}{2x-y+3≥0}\\{x+y≥0}\\{x≤1}\end{array}\right.$表示的平面区为D,P(x,y)为D内一动点,则目标函数z=x-2y+5的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若z∈C,a=$\frac{{z}^{2}-(\overline{z})^{2}}{2i}$,b=z•$\overline{z}$,则a-b的最大可能值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某次期中考试中,甲、乙两组学生的数学成绩如下:则下列结论正确的是(  )
甲:88 100 95 86 95 91 84 74 92 83
乙:93   89 81 77 96 78 77 85 89 86.
A.$\overline{x}$>$\overline{x}$,s>sB.$\overline{x}$甲>$\overline{x}$,s<sC.$\overline{x}$甲<$\overline{x}$,s>sD.$\overline{x}$甲<$\overline{x}$,s<s

查看答案和解析>>

同步练习册答案