精英家教网 > 高中数学 > 题目详情
4.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为两平面向量,且|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{1}}$|=1,<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=60°.
(1)若$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{1}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$-6$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,求证:A,B,D三点共线;
(2)若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2λ$\overrightarrow{{e}_{\;}}$2,$\overrightarrow{b}$=λ$\overrightarrow{{e}_{\;}}$1-$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,求实数λ的值.

分析 (1)根据三点共线的条件判断$\overrightarrow{BD}$∥$\overrightarrow{AB}$,即可.
(2)根据向量垂直的等价条件转化为$\overrightarrow{a}$•$\overrightarrow{b}$=0,解方程即可.

解答 解:∵|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{1}}$|=1,<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=60°.
∴$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=|$\overrightarrow{{e}_{1}}$||$\overrightarrow{{e}_{1}}$|cos60°=1×1×$\frac{1}{2}$=$\frac{1}{2}$.
(1)$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-6$\overrightarrow{{e}_{2}}$+3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$=5$\overrightarrow{{e}_{1}}$-5$\overrightarrow{{e}_{1}}$=5($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{1}}$)=5$\overrightarrow{AB}$,
则$\overrightarrow{BD}$∥$\overrightarrow{AB}$,
即A,B,D三点共线;
(2)若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2λ$\overrightarrow{{e}_{\;}}$2,$\overrightarrow{b}$=λ$\overrightarrow{{e}_{\;}}$1-$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
则$\overrightarrow{a}$•$\overrightarrow{b}$=0,即($\overrightarrow{{e}_{1}}$+2λ$\overrightarrow{{e}_{\;}}$2)•(λ$\overrightarrow{{e}_{\;}}$1-$\overrightarrow{{e}_{2}}$)=0,
即λ$\overrightarrow{{e}_{1}}$2-2λ$\overrightarrow{{e}_{\;}}$22+(2λ2-1)$\overrightarrow{{e}_{\;}}$1•$\overrightarrow{{e}_{2}}$=0
则λ-2λ+(2λ2-1)×$\frac{1}{2}$=0,
即2λ2-2λ-1=0,
则λ=$\frac{2±\sqrt{4+8}}{4}$=$\frac{2±2\sqrt{3}}{4}$=$\frac{1±\sqrt{3}}{2}$.

点评 本题主要考查向量数量积的应用,利用向量平行和向量垂直的向量公式进行转化,建立方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,正四棱锥S-ABCD的底面边长为2,E,F分别为SA,SD的中点.
(1)当SA=$\sqrt{5}$时,证明:平面BEF⊥平面SAD;
(2)若平面BEF与底面ABCD所成的角为$\frac{π}{3}$,求S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设loga2=m(a>0,且a≠1),则a2m的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.锐角△ABC中,角A,B,C所对的边分别为a,b,c,且acosB+bcosA=$\frac{3\sqrt{5}}{5}$csinC.
(1)求cosC;
(2)若a=6,b=8,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{m}$=(1,2),$\overrightarrow{n}$=(-3,2),若k$\overrightarrow{m}$+$\overrightarrow{n}$和$\overrightarrow{m}$-3$\overrightarrow{n}$互相垂直,则实数k的值为(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各角中与-$\frac{π}{4}$终边相同的是(  )
A.-$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{7π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知变量x,y之间的线性回归方程为y=-x+13,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是(  )
x681012
y6m32
A.可以预测,当x=9时,y=4B.该回归直线必过点(9,4)
C.m=4D.m=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA及a的值;
(2)若b2+c2=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.以正三棱柱的顶点为顶点的四面体共有12个.

查看答案和解析>>

同步练习册答案