精英家教网 > 高中数学 > 题目详情
3.从甲地到乙地,每天有直达汽车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地不同的乘车方法有(  )
A.12种B.19种C.32种D.60种

分析 分两类:第一类直接到达,第二类:间接到达,根据分类计数原理可得.

解答 解:分两类:第一类直接到达,甲地到乙地,每天有直达汽车4班共有4种方法,
第二类:间接到达,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,共有5×3=15种方法,
根据分类计数原理可得4+15=19,
故选:B.

点评 本题考查了分类计数原理和分步计数原理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{log2(an-1)},(n∈N*)为等差数列,且a1=3,a4=17.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.利用计算机产生[0,1]之间的均匀随机数a1=rand,经过下列的那种变换能得到[-2,3]之间的均匀随机数(  )
A.a=a1•5-2B.a=a1•2-3C.a=a1•3-2D.a=a1•2-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在实数a、b、c、d,满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则abcd的取值范围是(  )
A.(16,21)B.(16,24)C.(17,21)D.(18,24)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.公差不为零的等差数列{an}的前n项和为Sn.若a4是a2与a9的等比中项,S3=12,则S10等于(  )
A.96B.108C.145D.160

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设${({5\sqrt{x}-\root{3}{x}})^n}$展开式的各项系数的和为M,二项式系数的和为N,M-N=992,则展开式中x2项的系数为(  )
A.250B.-250C.150D.-150

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),过F且斜率为1的直线l交抛物线C于A(x1,y1),B(x2,y2)两点.
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆C:x2+y2+2x-4y-4=0与直线x-y+a=0相交于A,B两点,且AC⊥BC,则实数a的值为0或6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.王老师注册了一个QQ号,密码由五个数字构成,为了提高保密程度,他决定再插入一个英文字母a和一个感叹号!,原来的数字及顺序不变,则可构成新密码的个数为42(用数字作答).

查看答案和解析>>

同步练习册答案