精英家教网 > 高中数学 > 题目详情
12.已知全集U=R,集合A={x|x>4},B={x|-6<x<6}.
(1)求A∩B和A∪B;
(2)求∁UB;
(3)定义A-B={x|x∈A,且x∉B},求A-B,A-(A-B).

分析 (1),(2)根据集合交集、并集、补集的运算法则,代入计算可得答案,
(3)根据新定义即可求出答案.

解答 解:(1)∵集合A={x|x>4},B={x|-6<x<6},
∴A∩B={x|4<x<6},A∪B={x|x>4},
(2)∁UB={x|x≤-6或x≥6},
(3)∵定义A-B={x|x∈A,且x∉B},
∴A-B=A∩∁UB={x|x≥6},
∴A-(A-B)={x|4<x<6}

点评 本题考查的知识点是交,并,补的混合运算,熟练掌握集合的运算规则是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1•b3=4.
(Ⅰ)若an=log2bn+3,证明:数列{an}是等差数列;
(Ⅱ)若cn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(I)若a∈R且a≠0,求函数f(x)=ax2+x-a的“局部对称点”;
(II)若函数f(x)=4x-m•2x+1+m2-3在R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.( I)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,计算:$\frac{{x}^{2}+{x}^{-2}-7}{x+{x}^{-1}+3}$;
( II)求(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,离心率为$\frac{\sqrt{3}}{3}$,过点F且与x轴垂直的直线被椭圆截得的线段长为$\frac{4\sqrt{3}}{3}$,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设F1,F2分别是椭圆$\frac{x^2}{4}+{y^2}$=1的左、右焦点.
(1)若M是该椭圆上的一点,且∠F1MF2=120°,求△F1MF2的面积;
(2)若P是该椭圆上的一个动点,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求不等式a2x-1>ax+2(a>0,且a≠1)中x的取值范围(用集合表示).
(2)已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=$\sqrt{x}$+1,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=2|x|的定义域为[a,b],值域为[1,4],方程b=g(a)表示的图形可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BG:GC=DH:HC=1:2,求证:
(1)E,F,G,H四点共面;
(2)EG与HF的交点在直线AC上.

查看答案和解析>>

同步练习册答案