精英家教网 > 高中数学 > 题目详情

【题目】设正有理数a1 的一个近似值,令a2=1+ ,求证:
(1) 介于a1与a2之间;
(2)a2比a1更接近于

【答案】
(1)证明:a2 =1+ =

∵若a1 ,∴a1 >0,而1﹣ <0,

∴a2

∵若a1 ,∴a1 <0,而1﹣ <0,

∴a2

介于a1与a2之间;


(2)证明:|a2 |﹣|a1 |= ﹣|a1 |=|a1

∵a1>0, ﹣2<0,|a1 |>0,

∴|a2 |﹣|a1 |<0

∴|a2 |<|a1 |

∴a2比a1更接近于


【解析】(1)利用作差法,再因式分解,确定其符号,即可得到结论,(2)利用作差法,判断即可得到a2比a1更接近于 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p: ,命题q:x∈R,x2﹣2ax+2﹣a=0,若命题“p∧q”是真命题,则实数a的取值范围是(
A.(﹣∞,﹣2]∪{1}
B.(﹣∞,﹣2]∪[1,2]
C.[1,+∞)
D.[﹣2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1﹣EC﹣D的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非空集合G关于运算⊕满足:
⑴对任意a,b∈G,都有a+b∈G;
⑵存在e∈G使得对于一切a∈G都有a⊕e=e⊕a=a,
则称G是关于运算⊕的融洽集,
现有下列集合与运算:
①G是非负整数集,⊕:实数的加法;
②G是偶数集,⊕:实数的乘法;
③G是所有二次三项式构成的集合,⊕:多项式的乘法;
④G={x|x=a+b ,a,b∈Q},⊕:实数的乘法;
其中属于融洽集的是(请填写编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3},B={x|x2﹣(a+1)x+a=0,x∈R},若A∪B=A,求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的左、右焦点分别为F1、F2 , P为C的右支上一点,且|PF2|=|F1F2|,则 等于(
A.24
B.48
C.50
D.56

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题.

(1)求EF的长
(2)证明:EF∥平面AA1D1D;
(3)证明:EF⊥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人都准备于下午12:00﹣13:00之间到某车站乘某路公交车外出,设在12:00﹣13:00之间有四班该路公交车开出,已知开车时间分别为12:20;12:30;12:40;13:00,分别求他们在下述情况下坐同一班车的概率.
(1)他们各自选择乘坐每一班车是等可能的;
(2)他们各自到达车站的时刻是等可能的(有车就乘).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n∈R,定义在区间[m,n]上的函数f(x)=log2(4﹣|x|)的值域是[0,2],若关于t的方程( |t|+m+1=0(t∈R)有实数解,则m+n的取值范围是

查看答案和解析>>

同步练习册答案