精英家教网 > 高中数学 > 题目详情
当a>0时,函数f(x)=(x2-2ax)ex的图象大致是(  )
B
根据f(x)<0?x2-2ax<0?0<x<2a,可排除选项A,C,f′(x)=[x2+(2-2a)x-2a]ex,由f′(x)=0,即x2+(2-2a)x-2a=0,Δ=(2-2a)2+8a=4a2+4>0可知方程必存在两个根.设小的根为x0,则f(x)在(-∞,x0)上必定是单调递增的,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知.
(1)求函数在区间上的最小值;
(2)对一切实数恒成立,求实数的取值范围;
(3) 证明对一切恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定义在上的可导函数的导函数的图象如右所示,则的极值点的个数为 (  )
A.1 B.2C.3 D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

经过原点且与曲线y=相切的方程是(  )
A.x+y=0或+y=0B.x-y=0或+y=0
C.x+y=0或-y=0D.x-y=0或-y=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln x,g(x)=x2-bx(b为常数).
(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;
(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围;
(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图像在点处的切线方程是,则_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则等于  (    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案