精英家教网 > 高中数学 > 题目详情

已知在区间上是增函数.
(1)求实数的值组成的集合
(2)设关于的方程的两个非零实根为.试问:是否存在实数,使得不等式对任意 恒成立?若存在,求的取值范围;若不存在,请说明理由.

(1)实数a的值组成的集合
(2)存在实数,使得不等式对任意 恒成立.

解析试题分析:(1)先求出函数的导数,将条件在区间上为增函数这一条件转化为在区间上恒成立,结合二次函数的图象得到,从而解出实数的取值范围;(2)先将方程转化为一元二次方程,结合韦达定理得到,然后利用
用参数进行表示,进而得到不等式对任意
恒成立,等价转化为对任意恒成立,将不等式
转化为以为自变量的一次函数不等式恒成立,只需考虑相应的端点值即可,从而解出参数的取值范围.
试题解析:(1)因为在区间上是增函数,
所以,在区间上恒成立,

所以,实数的值组成的集合
(2)由 得,即
因为方程,即的两个非零实根为
是方程两个非零实根,于是




对任意恒成立,
,解得
因此,存在实数,使得不等式对任意恒成立.
考点:1.函数的单调性;2.二次函数的零点分布;3.韦达定理;4.主次元交换

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

我国是水资源较贫乏的国家之一,各地采用价格调控等手段来达到节约用水的目的,某市每户每月用水收费办法是:水费=基本费+超额费+定额损耗费.且有如下两条规定:
①若每月用水量不超过最低限量立方米,只付基本费10元加上定额损耗费2元;
②若用水量超过立方米时,除了付以上同样的基本费和定额损耗费外,超过部分每立方米加付元的超额费.
解答以下问题:(1)写出每月水费(元)与用水量(立方米)的函数关系式;
(2)若该市某家庭今年一季度每月的用水量和支付的费用如下表所示:

月份
 
用水量(立方米)
 
水费(元)
 

 
5
 
17
 

 
6
 
22
 

 

 
12
 
 
试判断该家庭今年一、二、三各月份的用水量是否超过最低限量,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ) 若函数上为增函数, 求实数的取值范围;
(Ⅱ) 求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数对任意,都有,当时, 
(1)求证:是奇函数;
(2)试问:在时 是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数若函数为奇函数,求的值.
(2)若,有唯一实数解,求的取值范围.
(3)若,则是否存在实数,使得函数的定义域和值域都为。若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)如果函数上是单调减函数,求的取值范围;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是实数,
(1)试确定的值,使成立;
(2)求证:不论为何实数,均为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的值域为,求实数的取值范围;
(2)当时,函数恒有意义,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且上是减函数,解不等式.

查看答案和解析>>

同步练习册答案