精英家教网 > 高中数学 > 题目详情

一企业生产的某产品在不做电视广告的前提下,每天销售量为b吨.经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S(吨)与电视广告每天的播放量n(次)的关系可用如图所示的程序框图来体现.

(1)试写出该产品每天的销售量S(吨)关于电视广告每天的播放量n(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需多少次?

(1)
(2)至少需4次

解析试题分析:(1)设电视广告播放量为每天i次时,该产品的销售量为si(0≤i≤n,)根据循环体可得再用数列中的累加法求得sn
(2)“要使该产品每天的销售量比不做电视广告时的销售量至少增加90%”根据(1)则有,或通过验证得到结果.
试题解析:(1)解:设电视广告播放量为每天i次时,该产品的销售量为
于是当时,
          5分
所以,该产品每天销售量S(吨)与电视广告播放量n(次/天)的函数关系式为
      7分
(2)由题意,有所以,要使该产品的销售量比不做电视广告时的销售量增加90%,则每天广告的播放量至少需4次.      12分
考点:1.考查函数模型的建立和应用;2.程序框图;3.累加法和指数不等式的解法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数,且的解集是(1,5).
(l)求实数a,c的值;
(2)求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

相关部门对跳水运动员进行达标定级考核,动作自选,并规定完成动作成绩在八分及以上的定为达标,成绩在九分及以上的定为一级运动员. 已知参加此次考核的共有56名运动员.
(1)考核结束后,从参加考核的运动员中随机抽取了8人,发现这8人中有2人没有达标,有3人为一级运动员,据此请估计此次考核的达标率及被定为一级运动员的人数;
(2)经过考核,决定从其中的A、B、C、D、E五名一级运动员中任选2名参加跳水比赛(这五位运动员每位被选中的可能性相同). 写出所有可能情况,并求运动员E被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,记函数的最大值为.
(1)设,求的取值范围,并把表示为的函数
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)解不等式:
(2)已知集合.若,求实数的取值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,造成堵塞,此时车流速度为;当时,车流速度为千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 当时,函数恒有意义,求实数a的取值范围;
(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

工厂生产某种产品,次品率与日产量(万件)间的关系为常数,且),已知每生产一件合格产品盈利元,每出现一件次品亏损元.
(1)将日盈利额(万元)表示为日产量(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大

查看答案和解析>>

同步练习册答案