精英家教网 > 高中数学 > 题目详情
5.若$\overrightarrow{m}$=(2,-1),$\overrightarrow{n}$=(-1,t),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,则实数t的值等于-2.

分析 利用向量垂直的充要条件数量积为0;利用向量的数量积公式列出方程求出t的值.

解答 解:$\overrightarrow{m}$=(2,-1),$\overrightarrow{n}$=(-1,t),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴$\overrightarrow{m}$•$\overrightarrow{n}$=0,
∴2×(-1)-t=0,
解得t=-2,
故答案为:-2.

点评 本题考查向量的数量积运算与向量垂直的充要条件,属容易题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.化简$\overrightarrow{AC}$+$\overrightarrow{DB}$+$\overrightarrow{CD}$-$\overrightarrow{AB}$得(  )
A.$\overrightarrow{AB}$B.$\overrightarrow{DA}$C.$\overrightarrow{BC}$D.$\overrightarrow 0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈[0,1]}\\{2-x,x∈(1,2)}\end{array}\right.$,则${∫}_{0}^{2}$f(x)dx=(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD.若棱AB,AD,AP两两垂直,长度分别为1,2,2,且向量$\overrightarrow{PC}$与$\overrightarrow{BD}$夹角的余弦值为$\frac{\sqrt{15}}{15}$.
(1)求CD的长度;
(2)求直线PB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设i是虚数单位,复数z满足$\frac{1+z}{1-z}=i$,则$|{\overline z}|$=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=3sin($\frac{1}{2}$x-$\frac{π}{6}$)的振幅3,周期4π,频率$\frac{1}{4π}$,相位$\frac{1}{2}$x-$\frac{π}{6}$,初相-$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于9;点A坐标(p,q),曲线C方程:y=$\sqrt{1-{x^2}}$,直线l过A点,且和曲线C只有一个交点,则直线l的斜率取值范围为{$\frac{10-\sqrt{10}}{12}$}∪($\frac{2}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a∈R,复数z=(a2-4a+5)-6i,在复平面内表示$\overline{z}$的点位于第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.我舰在敌岛A处南偏西50°的B处,且A,B距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行.若我舰要用2小时追上敌舰,则其速度大小为14海里/小时.

查看答案和解析>>

同步练习册答案