精英家教网 > 高中数学 > 题目详情
14.若复数z满足$(z-1)i=\sqrt{2}$(i为虚数单位),则复数|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{2}$

分析 利用代数的运算性质求出复数z,再求z的模长|z|.

解答 解:复数z满足$(z-1)i=\sqrt{2}$(i为虚数单位),
∴z-1=$\frac{\sqrt{2}}{i}$=-$\sqrt{2}$i
∴z=1-$\sqrt{2}$i
∴复数|z|=$\sqrt{{1}^{2}{+(-\sqrt{2})}^{2}}$=$\sqrt{3}$.
故选:C.

点评 本题考查了复数的代数运算与模长的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为AB中点,$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)设ND中点为Q,$λ=\frac{1}{2}$,求证:MQ∥平面ABC;
(Ⅱ)若M到平面BCD的距离为$\frac{{3\sqrt{3}}}{4}$,求直线MC与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=1,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.$\sqrt{13}$B.6C.$\sqrt{11}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=e2x+ln(x+a).
(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得$f({x_0})<2ln({{x_0}+a})+{x_0}^2$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l与抛物线C及其准线分别交于P,Q两点,$\overrightarrow{QF}=3\overrightarrow{FP}$,则直线l的斜率为$±\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ex(x3-a)(a∈R)在(-3,0)单调递减,则a的范围是(  )
A.[0,+∞)B.[2,4]C.[4,+∞)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=lnx-{x^2}+f'(\frac{1}{2})•\frac{x+2}{2}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:$(\frac{1}{2}{x^2}+x+1)f(x)<2{e^x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a∈[1,6],则函数$y=\frac{{{x^2}+a}}{x}$在区间[2,+∞)内单调递增的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=2cos2x-sin2x的最小值是(  )
A.-2B.$1-\sqrt{2}$C.$1+\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案