精英家教网 > 高中数学 > 题目详情
(本小题12分)
如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。


 
(1)证明:AB1⊥BC1;

(2)求点B到平面AB1C1的距离;
(3)求二面角C1—AB1—A1的大小。

(1)证明:解:如图建立直角坐标系,其为C为坐标原点,依题意A(2,0,0),B(0,2,0),
A1(2,0,2),B1(0,2,2),C1(0,0,2)


        
(2)解:
的一个法向量,



,∴点B到平面AB1C1的距离
(3)解设是平面A1AB1的一个法向量

     令
∴二面角C1—AB—A1的大小为60°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点.
(1)求证:AF//平面PCE;
(2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=

(Ⅰ)求面ASD与面BSC所成二面角的大小;
(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;
(Ⅲ)求点D到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,直三棱柱中,AC=BC=1, AAi="3"  DCCi上的点二面角A-A1B-D的余弦值为
(I )求证:CD=2;
(II)求点A到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)
如图所示,⊥矩形所在的平面,分别是的中点,

(1)求证:∥平面
(2)求证:
(3)若,求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD的底面为矩形,PA=AD=1,PA⊥面ABCD,E是AB的中点,F为PC上一点,且EF//面PAD。

(I)证明:F为PC的中点;
(II)若二面角C—PD—E的平面角的余弦值为求直线ED与平面PCD所成的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正的中线与中位线相交,
已知旋转过程中的一个
图形(不与重合).现给出下列四个命题:
①动点在平面上的射影在线段上;
②平面平面;                                                      
③三棱锥的体积有最大值;
④异面直线不可能垂直.其中正确的命题的序号是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、圆台上底半径为5cm,下底半径为10cm,母线AB=20cm,A在上底面上,B在下底面上,从AB中点M拉一条绳子,绕圆台侧面一周到B点,则绳子最短时长为_      ___

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两条不同直线,两个不同平面,给出下列命题:
①若垂直于内的两条相交直线,则
②若,则平行于内的所有直线;
③若,则
④若,则
⑤若,则
其中正确命题的序号是          .(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案