精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,直三棱柱中,AC=BC=1, AAi="3"  DCCi上的点二面角A-A1B-D的余弦值为
(I )求证:CD=2;
(II)求点A到平面A1BD的距离.
(Ⅰ)取AB中点EA1B1中点G,连结EG,交A1BF,连结CEC1G,作DMGEM
∵平面C1GEC⊥平面A1ABB1,∴DM⊥平面A1ABB1
MNA1BN,连结DN,则MNDN在平面A1ABB1上的射影,则∠DNM为二面角B1-A1B-D的平面角.……………………………………………………………4分
∴cos∠DNM=,DMC1G=,∴MN=.
∵sin∠MFN==,∴MF=,∴DC=2.…………………………7分
(Ⅱ)在△A1BD中,A1D=,BD=,A1B=.
cos∠A1DB==-,sin∠A1DB=,
SA1BDA1D·BDsin∠A1DB=,
SA1AB=××3=,点D到面A1AB的距离DMCE=,
设点A到平面A1BD的距离为d,则
SA1BD·dSA1AB×,∴d=.
故点A到平面A1BD的距离为.………………………………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,已知在直四棱柱中,

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。


 
(1)证明:AB1⊥BC1;

(2)求点B到平面AB1C1的距离;
(3)求二面角C1—AB1—A1的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在四边形中,垂直平分,且,现将四边形沿折成直二面角,求:
(1)求二面角的正弦值;
(2)求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四边形都是边长为的正方形,点E是的中点,
(1) 求证:平面BDE;
(2) 求证:平面⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥中,底面
四边长为1的菱形,, ,
,的中点,的中点
(Ⅰ)证明:直线
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在棱长为的正方体中,是线段 中点,.
(Ⅰ) 求证:^;(Ⅱ) 求证:∥平面
(Ⅲ) 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正四面体的顶点分别在两两垂直的三条射线上,给出下列四个命题:  
①多面体是正三棱锥;
②直线平面
③直线所成的角为;       
④二面角.
其中真命题有_______________(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,为圆的直径,点在圆上,,矩形所在平面和圆所在的平面互相垂直.
(Ⅰ)求证:AD∥平面BCF
(Ⅱ)求证:平面平面

查看答案和解析>>

同步练习册答案