精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象的一条切线为轴.(1)求实数的值;(2)令,若存在不相等的两个实数满足,求证: .

【答案】(1)(2)见解析

【解析】试题分析:(1)对函数求导,由题可设切点坐标为,由原函数和切线的斜率为可得方程组,解方程组得值;(2)由题知,可构造去绝对值后的函数,利用导数与函数单调性的关系,判断的单调性,再构造函数,利用导数判断出的单调性,最后可令,利用单调性可得结论.

试题解析:(1)

设切点坐标为,由题意得

解得: .

(2),令

,当时,

又可以写成,当时,

因此上大于0, 上单调递增,又

因此上小于0,在上大于0,

上单调递减,在上单调递增,

时,

记函数的导函数为,则

上单调递增,

所以,所以

不妨设,则

,有单调性知,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在实数a,使得函数y=sin2x+acosx+a-在闭区间[0,]上的最大值是1?若存在,则求出对应的a的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图: 所在平面外一点, 平面.求证:

(1)的垂心;

(2)为锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知底角为45的等腰梯形ABCD,底边BC长为7cm,腰长为,当一条垂直于底边BC

(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x

(1)试写出直线l左边部分的面积f(x)与x的函数.

(2)已知A={x|f(x)<4},B={x|a2<x<a+2},若AB=B,求a的取值范围。.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形中,相交于点平面.

(1)求证:平面

(2)当直线与平面所成角的大小为时,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),.

(1)若的图象在处的切线恰好也是图象的切线.

①求实数的值;

②若方程在区间内有唯一实数解,求实数的取值范围.

(2)当时,求证:对于区间上的任意两个不相等的实数 ,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题13)已知函数f(x) (a>0x>0)

(1)求证:f(x)(0,+∞)上是单调递增函数;

(2)f(x)[2]上的值域是[2],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通项公式;

(2)设cn=an+bn,求数列{cn}的前n项和.

查看答案和解析>>

同步练习册答案