精英家教网 > 高中数学 > 题目详情

【题目】是公差为的等差数列,是公比为)的等比数列,记.

1)令,求证:数列为等比数列;

2)若,数列2项和为14,前8项和为857,求数列通项公式;

3)在(2)的条件下,问:数列中是否存在四项成等差数列?请证明你的结论.

【答案】1)见详解;(2;(3)不存在,理由见详解.

【解析】

1)根据题意,先得到,再计算,根据等比数列的定义,即可证明结论成立;

2)根据题意,由等差数列与等比数列的求和公式,列出方程组求解,求出,即可得出通项公式;

3)先假设数列中存在四项成等差数列,不妨令

根据反证法,由题意推出矛盾,即可得出结论.

1)因为是公差为的等差数列,是公比为)的等比数列,

所以

因此数列为公比为的等比数列;

2)因为,数列2项和为14,前8项和为857

所以,即,解得:

所以

因此

3)假设数列中存在四项成等差数列,不妨令

因为,所以

,则

结合①得

化简得:②,

因为,易得,这与②矛盾;所以只能

同理:

因此为数列的连续三项,从而

,故,即

解得:,与矛盾;

所以假设不成立,从而数列中不存在四项成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面,已知,点分别为的中点.

1)求证:

2)若F在线段上,满足平面,求的值;

3)若三角形是正三角形,边长为2,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,

求这5人中经常使用、偶尔或不用共享单车的人数;

从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的单调区间和极值.

)若对于任意,都有成立,求的取值范围 ;

)若证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()

(结果精确到0.1.参考数据:lg20.3010lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆焦点在轴上,且椭圆个顶点构成的四边形面积为,过点的直线与椭圆相交于不同的两点.

(1)求椭圆的方程;

(2)设为椭圆上一点,且为坐标原点).求当时,实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示.

(1)求函数的解析式;

(2)将函数的图象向右平移个单位,得到的图象,求直线

函数的图象在内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,已知分别为的中点,点上,且求证:

(1)直线平面

(2)直线平面

查看答案和解析>>

同步练习册答案