【题目】设是公差为的等差数列,是公比为()的等比数列,记.
(1)令,求证:数列为等比数列;
(2)若,,数列前2项和为14,前8项和为857,求数列通项公式;
(3)在(2)的条件下,问:数列中是否存在四项、、、成等差数列?请证明你的结论.
【答案】(1)见详解;(2);(3)不存在,理由见详解.
【解析】
(1)根据题意,先得到,再计算,根据等比数列的定义,即可证明结论成立;
(2)根据题意,由等差数列与等比数列的求和公式,列出方程组求解,求出,即可得出通项公式;
(3)先假设数列中存在四项、、、成等差数列,不妨令,
根据反证法,由题意推出矛盾,即可得出结论.
(1)因为是公差为的等差数列,是公比为()的等比数列,,
,
所以,
因此数列为公比为的等比数列;
(2)因为,,数列前2项和为14,前8项和为857,
所以,即,解得:,
所以,,
因此;
(3)假设数列中存在四项、、、成等差数列,不妨令,
则,
因为,所以①
若,则,
结合①得,
化简得:②,
因为,,易得,这与②矛盾;所以只能;
同理:,
因此、、为数列的连续三项,从而,
即,故,即,
解得:,与矛盾;
所以假设不成立,从而数列中不存在四项、、、成等差数列.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,平面,已知,点分别为的中点.
(1)求证:;
(2)若F在线段上,满足平面,求的值;
(3)若三角形是正三角形,边长为2,求二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,
求这5人中经常使用、偶尔或不用共享单车的人数;
从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()
(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)
A.2.6天B.2.2天C.2.4天D.2.8天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为的椭圆焦点在轴上,且椭圆个顶点构成的四边形面积为,过点的直线与椭圆相交于不同的两点、.
(1)求椭圆的方程;
(2)设为椭圆上一点,且(为坐标原点).求当时,实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com