精英家教网 > 高中数学 > 题目详情
13.画出下列函数的图象,并根据图象写出单调减区间和值域.
(1)y=1+$\frac{|x|-x}{2}$;
(2)y=|x2-x|.

分析 (1)作函数y=1+$\frac{|x|-x}{2}$的图象,从而写出单调减区间和值域.
(2)作函数y=|x2-x|的图象,从而写出单调减区间和值域.

解答 解:(1)作函数y=1+$\frac{|x|-x}{2}$的图象如下,

故函数的单调减区间为(-∞,0),值域为[1,+∞);
(2)作函数y=|x2-x|的图象如下,

故函数的单调减区间为(-∞,0),($\frac{1}{2}$,1);
值域为[0,+∞).

点评 本题考查了学生的作图能力与应用图象的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数y=ax2+bx+c且f(0)=2,f(-1)=3,f(2)=-6.求:
(1)函数的解析式;
(2)函数增减区间;
(3)函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{x-{x}^{2},x≤5}\\{f(x-4),x>5}\end{array}\right.$,则f(6)等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.下边是某个学生在学习《函数的最值》一节以后做的作业,其解答过程和结论都是正确的,但是不知道什么原因,题目中定义域部分[0,█]看不清楚,请你根据所学的只是,判断一下图中“█”的可能取值.
已知函数y=x2-3x-4
定义域为[0,█],求函数的值域
解:…
故函数的值域为[-$\frac{25}{4}$,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.判断下列函数的奇偶性:
(1)f(x)=x+1;  
(2)f(x)=x3+3x,x∈[-4,4);
(3)f(x)=|x-2|-|x+2|;
(4)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}{x}^{2}+1,x>0}\\{-\frac{1}{2}{x}^{2}-1,x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=lg(12-4x-x2)的定义域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解答下列问题:
(1)在等差数列{an}中,设a1+a2+a3=12,且a4+a5+a6=18,求a7+a8+a9的值;
(2)设向量$\overrightarrow{a}$=(x,1)与$\overrightarrow{b}$=(2,4),且($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$x2-alnx,f′(x)-2e=$\frac{lnx}{{x}^{2}}$恰有两个交点.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若曲线y=sinx,x∈(-π,π)在点P处的切线平行于曲线y=$\sqrt{x}(\frac{x}{3}+1)$在点Q处的切线,则PQ的斜率为$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案