精英家教网 > 高中数学 > 题目详情
1.下边是某个学生在学习《函数的最值》一节以后做的作业,其解答过程和结论都是正确的,但是不知道什么原因,题目中定义域部分[0,█]看不清楚,请你根据所学的只是,判断一下图中“█”的可能取值.
已知函数y=x2-3x-4
定义域为[0,█],求函数的值域
解:…
故函数的值域为[-$\frac{25}{4}$,-4]

分析 可对原函数进行配方:y=$(x-\frac{3}{2})^{2}-\frac{25}{4}$,根据该函数的值域,便知-4是定义域的端点值,从而令y=0可解出x=0,或3,这样让定义域必须包含$\frac{3}{2}$,又不能超过3,这样写出看不清部分的可能的取值范围即可.

解答 解:y=${x}^{2}-3x-4=(x-\frac{3}{2})^{2}-\frac{25}{4}$;
∵该函数的值域为:[$-\frac{25}{4}$,-4],说明-4是端点值;
∴令$(x-\frac{3}{2})^{2}-\frac{25}{4}=-4$,得,x=0,或3;
∴看不清的定义域右端点值的可能取值范围为$[\frac{3}{2},3]$.

点评 考查函数定义域、值域的概念,配方法求函数的值域,要熟悉二次函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.实数x,y,z满足x2-2x+y=z-1,则y,z之间的大小关系为y≤z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x2-4tx+3在区间[-3,2]上单调,且函数f(x)的最小值为-13,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.A={x||x+7|>10},B={x||x-5|<k},且A∩B=B,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=3x2-x+1.
(1)求f(1)、f(-2)、f(a)、f(a+1)的值;
(2)若f(x)=1,求x的值;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x 求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.画出下列函数的图象,并根据图象写出单调减区间和值域.
(1)y=1+$\frac{|x|-x}{2}$;
(2)y=|x2-x|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$)是定义域为R的奇函数,且当x=2时,f(x)取得最大值2,则f(1)+f(2)+f(3)+…+f(100)=(  )
A.2+2$\sqrt{2}$B.2-2$\sqrt{2}$C.2±2$\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=ex-x2,g(x)=ax+b(a>0),若对?x1∈[0,2],?x2∈[0,2],使得f(x1)=g(x2),则实数a,b的取值范围是(  )
A.0<a≤$\frac{{{e^2}-5}}{2}$,b≥1B.0<a≤$\frac{{{e^2}-5}}{2}$,b≤1C.a≥$\frac{{{e^2}-5}}{2}$,b≥1D.a≥$\frac{{{e^2}-5}}{2}$,b≤1

查看答案和解析>>

同步练习册答案