精英家教网 > 高中数学 > 题目详情
已知曲线C的方程是
x2
m
+y2=1(m∈R
,且m≠0),给出下面三个命题:
①若曲线C表示圆,则m=1;
②若曲线C表示椭圆,则m的值越大,椭圆的离心率越大;
③若曲线C表示双曲线,则m的值越大,双曲线的离心率越小;
其中正确的命题是______.(填写所有正确命题的序号)
若曲线C表示圆,应该满足
1
m
=1
即m=1,故①对;
若C若曲线C表示椭圆,当m<1时,椭圆的离心率e=
1-m
1
=
1-m
,m的值越大,椭圆的离心率越小,故②错;
若C若曲线C表示双曲线,有m<0时,双曲线的离心率e=
1+m
1
=
1+m
,m的值越大,双曲线的离心率越小,故③对.
故答案为:①③.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点坐标为F1(-5,0),F2(5,0),离心率e=
5
3
,P为椭圆上一点.
(1)求椭圆的标准方程;
(2)若PF1⊥PF2,求S△PF1F2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
5
+
y2
4
=1
的焦距是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为4,F1F2分别是椭圆C的左,右焦点,直线y=x与椭圆C在第一象限内的交点为A,△AF1F2的面积为2
6
,点P(x0,y0),是椭圆C上的动点w.
(1)求椭圆C的方程;
(2)若∠F1PF2为钝角,求点P的横坐标x0的取值范围;
(3)求
3
PF1+
2
PA的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1是椭圆
x2
25
+
y2
9
=1
的左焦点,P是椭圆上的动点,A(1,1)是一定点,则PA+PF1的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

AB是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则KAB•KOM的值为(  )
A.e-1B.1-eC.e2-1D.1-e2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),c=
a2-b2
,圆(x-c)2+y2=c2与椭圆恰有两个公共点,则椭圆的离心率e的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程mx2+(2-m)y2=1表示焦点在x轴上的椭圆,则实数m的取值范围是(  )
A.(1,+∞)B.(0,2)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
恒过定点A(1,2),则椭圆的中心到准线的距离的最小值______.

查看答案和解析>>

同步练习册答案