精英家教网 > 高中数学 > 题目详情
2.函数f(x)=xex的一个单调递增区间是(  )
A.[-1,0]B.[-8,-3]C.[-2,-1]D.[-3,-2]

分析 对函数f(x)=xex进行求导,然后令导函数大于0求出x的范围,即可得到答案.

解答 解:由函数f(x)=xex,得f′(x)=ex+xex=ex(x+1),
因为ex>0,由f′(x)=ex(x+1)>0,得:x>-1.
所以,函数f(x)=xex的单调递增区间是[-1,+∞).
[-1,0]?[-1,+∞).
故选:A.

点评 本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,若从中抽取一个容量为50的样本,按照系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第3个号码为0055.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过抛物线C:y2=2px(p>0)的焦点F,且斜率为$\frac{3}{4}$的直线交抛物线C与A,B两点,若$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(0<λ<1),λ=(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某地有2000名学生参加数学学业水平考试,现将成绩(满分:100分)汇总,得到如图所示的频率分布表.
(1)请完成题目中的频率分布表,并补全题目中的频率分布直方图;
成绩分组频数频率
[50,60]100 
(60,70]  
(70,80]800 
(80,90]  
(90,100]200 
(2)将成绩按分层抽样的方法抽取150名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别似乎a,b,c,且a=2,2cos2$\frac{B+C}{2}$+sinA=$\frac{4}{5}$.
(1)若b=$\frac{5\sqrt{3}}{3}$,求角B;
(2)求△ABC周长l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2-lnx,g(x)=$\frac{1}{2}$ax2+x(a∈R).
(1)当a=$\frac{1}{2}$时,求函数f(x)的单调递增区间;
(2)设F(x)=f(x)-g(x),若关于x的不等式F(x)≥1-ax恒成立,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,解答下列问题:
(1)求证:在函数的定义域内任取x1,x2,当x1+x2=1时.都有f(x1)+f(x2)=1成立
(2)求f($\frac{1}{11}$)+f($\frac{2}{11}$)+f($\frac{3}{11}$)+…+f($\frac{10}{11}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设0<a<b,则下列不等式中正确的是(  )
A.a<b<$\sqrt{ab}$<$\frac{a+b}{2}$B.a<$\sqrt{ab}$<$\frac{a+b}{2}$<bC.a<$\sqrt{ab}$<b<$\frac{a+b}{2}$D.$\sqrt{ab}$<a<$\frac{a+b}{2}$<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=-x2+2x.则不等式f(log2x)<f(2)的解集为(4,+∞)∪(0,1).

查看答案和解析>>

同步练习册答案