精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,解答下列问题:
(1)求证:在函数的定义域内任取x1,x2,当x1+x2=1时.都有f(x1)+f(x2)=1成立
(2)求f($\frac{1}{11}$)+f($\frac{2}{11}$)+f($\frac{3}{11}$)+…+f($\frac{10}{11}$)的值.

分析 (1)由f(x1)+f(x2)=f(x1)+f(1-x1),利用指数函数性质、运算法则能证明当x1+x2=1时,f(x1)+f(x2)=1.
(2)由当x1+x2=1时f(x1)+f(x2)=1,能求出f($\frac{1}{11}$)+f($\frac{2}{11}$)+f($\frac{3}{11}$)+…+f($\frac{10}{11}$)的值.

解答 证明:(1)∵f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,
∴在函数的定义域内任取x1,x2,当x1+x2=1时,
f(x1)+f(x2)=f(x1)+f(1-x1)=$\frac{{4}^{{x}_{1}}}{{4}^{{x}_{1}}+2}$+$\frac{{4}^{1-{x}_{1}}}{{4}^{1-{x}_{1}}+2}$
=$\frac{{4}^{{x}_{1}}}{{4}^{{x}_{1}}+2}+\frac{{4}^{\;}}{{4+2•4}^{{x}_{1}}}$=$\frac{{4}^{{x}_{1}}}{{4}^{{x}_{1}}+2}$+$\frac{2}{{4}^{{x}_{1}}+2}$=1.
解:(2)由(1)得:
f($\frac{1}{11}$)+f($\frac{2}{11}$)+f($\frac{3}{11}$)+…+f($\frac{10}{11}$)
=5×1
=5.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设集合A={-2,-1,1},B={x∈Z|-1≤x≤1},则A∪B=(  )
A.{-1,1}B.{0,1}C.{-2,-1,1}D.{-2,-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知映射f:M→N,其中集合M={(x,y)|xy=1,x>0},且在映射f的作用下,集合M中的元素(x,y)都变换为(log2x,log2y),若集合N中的元素都是集合M中元素在映射f下得到的,则集合N是(  )
A.{(x,y)|x+y=0}B.{(x,y)|x+y=0,x>0}C.{(x,y)|x+y=1}D.{(x,y)|x+y=1,x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=xex的一个单调递增区间是(  )
A.[-1,0]B.[-8,-3]C.[-2,-1]D.[-3,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{-x^2+4x,x≤0}\\{ln(x+1),x>0}\end{array}\right.$,若函数g(x)=f(x)-mx有且只有一个零点,则实数m的取值范围是(  )
A.[1,4]B.(-∞,0]C.(-∞,4]D.(-∞,0]∪[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.曲线x2-xy=2y2经过点M0(-2,2)处的切线方程为y=-3x-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则:
(1)△ABC的外接圆方程为(x+1)2+(y-1)2=10;
(2)顶点C的坐标是(-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.复数z和(z+2)2+8i在复平面内对应的点都在虚轴上,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从{-3,-2,-1,0,1,2,3}中,任取3个不同的数作为抛物线的方程y=ax2+bx+c(a≠0)的系数,使抛物线过原点,且顶点在第一象限这样的抛物线共有(  )条.
A.9B.6C.12D.7

查看答案和解析>>

同步练习册答案