精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an},{bn}满足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4及b2 , b3 , b4
(Ⅱ)猜想{an},{bn}的通项公式,并证明你的结论;
(Ⅲ)证明:对所有的 n∈N* sin

【答案】解:(I)令n=1得 ,解得

令n=2得 ,解得

令n=3得 ,解得

(II)猜想:an=n(n+1),bn=(n+1)2

证明:当n=1时,猜想显然成立,

假设n=k(k≥1)猜想成立,即ak=k(k+1),bk=(k+1)2

∵2bk=ak+ak+1,∴ak+1=2bk﹣ak=2(k+1)2﹣k(k+1)=(k+1)(k+2),

∵ak+12=bkbk+1,∴bk+1= =(k+2)2

∴当n=k+1时,猜想成立,

∴an=n(n+1),bn=(n+1)2,n∈N+

(III)证明:由(II)可知 =

于是原不等式等价于 sin

(i)先证

∵4n2﹣1<4n2,∴(2n+1)(2n﹣1)<4n2

∴(2n﹣1)2(2n+1)<4n2(2n﹣1),

即( 2 ,即

=

(ii)再证 sin

=x,则0<x≤

设f(x)=x﹣ sinx,则f′(x)=1﹣ cosx<0,

∴f(x)在(0, )上单调递减,

∴f(x)<f(0)=0,即x sinx,

sin

综上,对所有的 n∈N* sin


【解析】(I)依次把n=1,2,3代入递推式即可求出{an},{bn}的前4项;(II)利用数学归纳法证明猜想;(III)利用放缩法证明不等式左边,利用函数单调性证明不等式右边.
【考点精析】解答此题的关键在于理解归纳推理的相关知识,掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABCA1B1C1中,AB2AA13

DC1B的中点,PAB边上的动点.

(1)当点PAB的中点时,证明DP∥平面ACC1A1

(2)若AP=3PB,求三棱锥BCDP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在二项式( + n展开式中,前三项的系数成等差数列. 求:(1)展开式中各项系数和;
【答案】解:由题意得2 × =1+ ×
化为:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
中,令x=1,可得展开式中各项系数和= =
(1)展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=2m+4-m2i,当实数m取何值时,复数z对应的点:

1位于虚轴上?

2位于一、三象限

3位于以原点为圆心,以4为半径的圆上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县农民年均收入服从μ=500元,σ=20元的正态分布,求:

(1)此县农民的年均收入在500~520元之间的人数的百分比;

(2)此县农民的年均收入超过540元的人数的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个n=1,2,3,4,现从袋中任取一球,X表示所取球的标号.

1求X的分布列,均值和方差;

2若Y=aX+b,EY=1,DY=11,试求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=9x+m3x , 若存在实数x0 , 使得f(﹣x0)=﹣f(x0)成立,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过定点P(0,1),且与直线l1x3y100l22xy80分别交于AB两点.若线段AB的中点为P,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 )的图象关于直线对称,且图像上相邻两个最高点的距离为

(1)求函数的解析式以及它的单调递增区间;

(2)是否存在实数,满足不等式?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案