精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
(Ⅰ)∵acosC,bcosB,ccosA成等差数列,
∴acosC+ccosA=2bcosB,
由正弦定理得,a=2RsinA,b=2RsinB,c=2RsinC,
代入得:2RsinAcosC+2RcosAsinC=4RsinBcosB,
即:sin(A+C)=sinB,
∴sinB=2sinBcosB,
又在△ABC中,sinB≠0,
cosB=
1
2

∵0<B<π,
B=
π
3

(Ⅱ)∵B=
π
3

A+C=
3

2sin2A+cos(A-C)=1-cos2A+cos(2A-
3
)

=1-cos2A-
1
2
cos2A+
3
2
sin2A=1+
3
2
sin2A-
3
2
cos2A

=1+
3
sin(2A-
π
3
)

0<A<
3
-
π
3
<2A-
π
3
<π

-
3
2
<sin(2A-
π
3
)≤1

∴2sin2A+cos(A-C)的范围是(-
1
2
,1+
3
]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案