精英家教网 > 高中数学 > 题目详情
已知正方形,则以为焦点,且过两点的椭圆的离心率为______.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知椭圆的中心在原点,焦点在轴上,点分别是椭圆的左、右焦点,在椭圆的右准线上的点,满足线段的中垂线过点.直线为动直线,且直线与椭圆交于不同的两点
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆上存在点,满足为坐标原点),
求实数的取值范围;
(Ⅲ)在(Ⅱ)的条件下,当取何值时,的面积最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆C的中心在原点,焦点F1,F2在x轴上,离心率,且经过点
(1)求椭圆C的方程;
(2)若直线l经过椭圆C的右焦点F2,且与椭圆C交于A,B两点,使得|F1A|,|AB|,|BF1|依次成等差数列,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左、右焦点分别为F1F2.过F1的直线交椭圆于BD两点,过F2的直线交椭圆于AC两点,且ACBD,垂足为P.
(Ⅰ)设P点的坐标为,证明:
(Ⅱ)求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点与短轴的两个端点的连线互相垂直,则此椭圆的离心率为
(    )
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知集合A=, 方程: 表示焦点在轴上的椭圆,则这样的不同椭圆的个数是
A.9B.10C.18D.19

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分) 已知:如图,设P为椭圆上的任意一点,过点P作椭圆的切线,交准线m于点Z,此时FZ⊥FP,过点P作PZ的垂线交椭圆的长轴于点G,椭圆的离心率为e,求证:FG=e·FP

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)已知实数满足,则的取值范围是   ▲  
(文)已知函数,在同一周期内,当时,取得最大值2;当 时,取得最小值,那么该函数的解析式是   ▲  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点F1F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于AB两点,若△ABF2为正三角形,则该椭圆的离心率是_____________.

查看答案和解析>>

同步练习册答案