精英家教网 > 高中数学 > 题目详情
13.设Sn是等差数列{an}的前n项和,若a1=2,S5=12,则a6等于3.

分析 由等差数列的求和公式和已知条件可得公差d的方程,解方程可得d,由通项公式可得a6的值.

解答 解:设等差数列{an}的公差为d,
∵a1=2,S5=12,
∴S5=5a1+$\frac{5×4}{2}$d=10+10d=12,
解得d=$\frac{1}{5}$,
∴a6=2+5×$\frac{1}{5}$=3,
故答案为:3.

点评 本题考查等差数列的求和公式和通项公式,求出数列的公差是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在△ABC中,AB=1,AC=2,若G,H分别为△ABC的重心,外心,则$\overrightarrow{GH}•\overrightarrow{BC}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=4cosxcos(x-$\frac{π}{3}$)-2.
(I)求函数f(x)的最小正周期;
(II)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数在R上是单调函数,f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,则实数a的取值范围是$\frac{1}{7}$≤a<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知AC、BD为圆x2+y2=4的两条互相垂直的弦,AC与BD相交于点M$(1,\sqrt{2})$,则四边形ABCD面积的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某班有学生40人,将其数学成绩平均分为两组,第一组的平均分为80,标准差为4,第二组的平均分为90,标准差为6,则该班40名学生的数学成绩平均分为85,标准差为$\sqrt{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:①函数f(x)=x2-2x(x∈R)是单函数;②函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥2}\\{2-x,x<2}\end{array}\right.$是单函数;③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.其中的真命题是③(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,边长为1的正方形ABCD的顶点A,D分别在边长为2的正方形A′B′C′D′的边A′B′和A′D′上移动,则$\overrightarrow{A'B}•\overrightarrow{A'C}$的最大值是(  )
A.2B.1+$\sqrt{2}$C.πD.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集U=R,集合A={x|x2-2x-3>0},B={x|x2+2x-8≤0},
(1)求A∩B,(∁UA)∪B;
(2)若C={x|m+1≤x≤2m-1}且C∩A=C,求m的取值范围.

查看答案和解析>>

同步练习册答案