精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是 的中点.

(1)求证: 平面

(2)求二面角的大小;

(3)求直线与平面所成角的正弦值.

【答案】(1)详见解析;(2);(3).

【解析】试题分析:

(1)利用题意由即可证得平面.

(2)利用题意找到二面角的平面角为

(3)利用(2)中的结论找到线面角,计算可得直线与平面所成角的正弦值为.

试题解析:(1)设相交于点,连接,则中点,

中点, .

平面 平面

平面.

(2)正三棱柱 底面.

就是二面角的平面角.

.

,即二面角的大小是.

(3)由(2)作 为垂足.

,平面平面,平面平面

平面

平面 .

平面,连接,则就是直线与平面所成的角.

中,

.

.

直线与平面所成的角的正弦值为.

(备注:也可以建立空间直角坐标系来解答.)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着社会发展,淮北市在一天的上下班时段也出现了堵车严重的现象。交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3 ),从淮北市交通指挥中心随机选取了一至四马路之间50个交通路段,依据交通指数数据绘制的直方图如图所示:

(I)据此直方图估算交通指数T∈[4,8)时的中位数和平均数;

(II)据此直方图求出早高峰一至四马路之间的3个路段至少有2个严重拥堵的概率是多少?

(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin( x+φ),x∈R,A>0,0<φ< .y=f(x)的部分图象如图所示,P、Q 分别为该图象的最高点和最低点,点P的坐标为(1,A).点R的坐标为(1,0),∠PRQ=

(1)求f(x)的最小正周期以及解析式.
(2)用五点法画出f(x)在x∈[﹣ ]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:

2

3

4

5

6

7

(1)请用相关系数加以说明之间存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).

附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

,相关系数公式为:.

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:①“若,则”是假命题;②从正方体的面对角线中任取两条作为一对,其中所成角为的有48对;③“ ”是方程表示焦点在轴上的双曲线的充分不必要条件;④点是曲线 )上的动点,且满足,则的取值范围是;⑤若随机变量服从正态分布,且,则.其中正确命题的序号是__________(请把正确命题的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程 在(0,2π)内有相异两解α,β,则α+β=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列四个正方体中,为正方体的两个顶点,为所在棱的中点,则在这四个正方体中,直接与平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界)。

(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;

(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(xy)落在区域B的概率;

查看答案和解析>>

同步练习册答案