精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin( x+φ),x∈R,A>0,0<φ< .y=f(x)的部分图象如图所示,P、Q 分别为该图象的最高点和最低点,点P的坐标为(1,A).点R的坐标为(1,0),∠PRQ=

(1)求f(x)的最小正周期以及解析式.
(2)用五点法画出f(x)在x∈[﹣ ]上的图象.

【答案】
(1)解:由题意得:f(x)的最小正周期

因为P(1,A)在 的图象上,

所以

所以 ,即

又因为

因此,

过Q做QD⊥x轴,垂足为D,设D(x0,0),则Q(x0,﹣A),由周期为6可知,RD=3,

由于

所以 ,于是QD=RD=3,

所以A=3,


(2)解:列表如下:

x

﹣0.5

1

2.5

4

5.5

0

π

0

3

0

﹣3

0

描点连线,作图如下:


【解析】(1)根据周期公式求出函数f(x)的最小正周期,由P(1,A)在 的图象上,结合范围0<φ< ,可求φ,由图象和条件设出点Q的坐标,再过点Q做x轴的垂线,设垂足为D,根据条件和正切函数求出A,从而可得函数解析式;(2)利用五点作图法即可作图得解.
【考点精析】认真审题,首先需要了解五点法作函数y=Asin(ωx+φ)的图象(描点法及其特例—五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线)).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:

(1)CD=BC;
(2)△BCD∽△GBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴相切,

(Ⅰ)求证:

(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在某港口处获悉,其正东方向距离20n mile的处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°距港口10n mile的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.

(1)求接到救援命令时救援船距渔船的距离;

(2)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位有工程师6人,技术员12人,技工18人,要从这些人中取一个容量为n的样本;如果采用系统抽样和分层抽样方法抽取,无须剔除个体;如果样本容量增加1个,则在采用系统抽样时需要在总体中先剔除一个个体,则n的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中在点处的导数, 为常数).

(1)求的值;

(2)求函数的单调区间;

(3)设函数,若函数在区间上单调递增,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:
①若α、β为第一象限角,且α>β,则sinα>sinβ
②函数y=|sinx|与y=|tanx|的最小正周期相同
③函数f(x)=sin(x+ )在[﹣ ]上是增函数;
④若函数f(x)=asinx﹣bcosx的图象的一条对称轴为直线x= ,则a+b=0.
其中正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是 的中点.

(1)求证: 平面

(2)求二面角的大小;

(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,焦点为,点在抛物线上,且的距离比到直线的距离小1.

(1)求抛物线的方程;

(2)若点为直线上的任意一点,过点作抛物线的切线,切点分别为,求证:直线恒过某一定点.

查看答案和解析>>

同步练习册答案