【题目】已知当x<1时,f(x)=(2﹣a)x+1;当x≥1时,f(x)=ax(a>0且a≠1).若对任意x1≠x2 , 都有 成立,则a的取值范围是( )
A.(1,2)
B.
C.
D.(0,1)∪(2,+∞)
科目:高中数学 来源: 题型:
【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随即抽取人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:
男 | 女 | 总计 | |
认为共享产品对生活有益 | |||
认为共享产品对生活无益 | |||
总计 |
(1)根据表中的数据,能否在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系?
(2)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取人,再从人中随机抽取人赠送超市购物券作为答谢,求恰有人是女性的概率.
参与公式:
临界值表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={y|y= },B={x|y=lg(x﹣2x2)},则R(A∩B)=( )
A.[0, )
B.(﹣∞,0)∪[ ,+∞)
C.(0, )
D.(﹣∞,0]∪[ ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义下凸函数如下:设f(x)为区间I上的函数,若对任意的x1 , x2∈I总有f( )≥ ,则称f(x)为I上的下凸函数,某同学查阅资料后发现了下凸函数有如下判定定理和性质定理: 判定定理:f(x)为下凸函数的充要条件是f″(x)≥0,x∈I,其中f″(x)为f(x)的导函数f′(x)的导数.
性质定理:若函数f(x)为区间I上的下凸函数,则对I内任意的x1 , x2 , …,xn , 都有 ≥f( ).
请问:在△ABC中,sinA+sinB+sinC的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx.
(Ⅰ)设函数g(x)= ,求g(x)的单调区间;
(Ⅱ)若方程f(x)=t有两个不相等的实数根x1 , x2 , 求证:x1+x2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某气象站观测点记录的连续4天里,AQI指数M与当天的空气水平可见度y(单位cm)的情况如下表1:
M | 900 | 700 | 300 | 100 |
y | 0.5 | 3.5 | 6.5 | 9.5 |
哈尔滨市某月AQI指数频数分布如下表2:
M | [0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设x= ,根据表1的数据,求出y关于x的回归方程; (参考公式: ;其中 , )
(2)小张开了一家洗车店,经统计,当M不高于200时,洗车店平均每天亏损约2000元;当M在200至400时,洗车店平均每天收入约4000元;当M大于400时,洗车店平均每天收入约7000元;根据表2估计小张的洗车店该月份平均每天的收入.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点O为极点,x轴为正半轴为极轴,建立极坐标系.设曲线C: (α为参数);直线l:ρ(cosθ+sinθ)=4.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)求曲线C上的点到直线l的最大距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是圆O的切线;
(2)若∠CAB=60°,⊙O的半径为2,EC=1,求DE的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(10分)
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com