精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以原点O为极点,x轴为正半轴为极轴,建立极坐标系.设曲线C: (α为参数);直线l:ρ(cosθ+sinθ)=4.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)求曲线C上的点到直线l的最大距离.

【答案】解:(Ⅰ)根据sin2α+cos2α=1将C转化普通方程为: 利用ρcosθ=x,ρsinθ=y,将l转化为直角坐标方程为:x+y﹣4=0
(Ⅱ)在 上任取一点A( cosα,sinα),则点A到直线的距离为
d= =
它的最大值为3
【解析】(Ⅰ)先根据sin2α+cos2α=1消去α将C转化普通方程,然后利用ρcosθ=x,ρsinθ=y,将l转化为直角坐标方程即可;(Ⅱ)先在曲线C上任取一点,然后利用点到直线的距离公式建立函数关系,最后利用辅助角公式求出最值.
【考点精析】解答此题的关键在于理解点到直线的距离公式的相关知识,掌握点到直线的距离为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年郴州市两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题时百姓最为关心的热点,参与调查者中关注此问题的约占80%,现从参与者中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.
(1)求出频率分布直方图中的a值,并求出这200的平均年龄;
(2)现在要从年龄较小的第1,2,3组用分层抽样的方法抽取12人,再从这12人中随机抽取3人赠送礼品,求抽取的3人中至少有1人的年龄在第3组的概率;
(3)若要从所有参与调查的人(人数很多)中随机选出3人,记关注民生问题的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在(单位:克)中,其频率分布直方图如图所示.

(1)求质量落在两组内的蜜柚的抽取个数,

(2)从质量落在内的蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知当x<1时,f(x)=(2﹣a)x+1;当x≥1时,f(x)=ax(a>0且a≠1).若对任意x1≠x2 , 都有 成立,则a的取值范围是(
A.(1,2)
B.
C.
D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x)满足f(x)=x2﹣2x﹣3(x>0).
(Ⅰ) 若函数g(x)=|f(x)|﹣a有4个零点,求实数a的取值范围;
(Ⅱ) 求|f(x+1)|≤4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,g(x)=|x﹣2|,则下列结论正确的是(
A.h(x)=f(x)+g(x)是偶函数
B.h(x)=f(x)?g(x)是奇函数
C.h(x)= 是偶函数
D.h(x)= 是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足|x﹣3|<1.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若其中a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(Ⅰ)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(Ⅱ)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某水文观测点的历史统计数据,得到某河流水位X(单位:米)的频率分布直方图如图:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.
(1)求未来三年,至多有1年河流水位X∈[27,31)的概率(结果用分数表示);
(2)该河流对沿河A企业影响如下:当X∈[23,27)时,不会造成影响;当X∈[27,31)时,损失10000元;当X∈[31,35)时,损失60000元,为减少损失,现有种应对方案: 方案一:防御35米的最高水位,需要工程费用3800元;
方案二:防御不超过31米的水位,需要工程费用2000元;
方案三:不采取措施;
试比较哪种方案较好,并请说理由.

查看答案和解析>>

同步练习册答案