精英家教网 > 高中数学 > 题目详情
14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,左、右焦点分别为圆F1、F2,M是C上一点,|MF1|=2,且$|{\overrightarrow{M{F_1}}}||{\overrightarrow{M{F_2}}}|=-2\overrightarrow{M{F_1}}•\overrightarrow{{F_2}M}$.
(1)求椭圆C的方程;
(2)当过点P(4,1)的动直线l与椭圆C相交于不同两点A,B时,线段AB上取点Q,且Q满足$|{\overrightarrow{AP}}||{\overrightarrow{QB}}|=|{\overrightarrow{AQ}}||{\overrightarrow{PB}}|$,证明点Q总在某定直线上,并求出该定直线.

分析 (1)由已知得a=2c,且$∠{F_1}M{F_2}={60^0}$,由余弦定理求出c=1.由此能求出椭圆C的方程.
(2)设直线l的方程为y=kx+(1-4k),代入椭圆方程,得(3+4k2)x2+(8k-32k2)x+64k2-32k-8=0,由此利用韦达定理、向量,结合已知条件能证明点Q总在某定直线上,并求出该定直线.

解答 解:(1)∵椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,
左、右焦点分别为圆F1、F2,M是C上一点,|MF1|=2,且$|{\overrightarrow{M{F_1}}}||{\overrightarrow{M{F_2}}}|=-2\overrightarrow{M{F_1}}•\overrightarrow{{F_2}M}$.
∴由已知得a=2c,且$∠{F_1}M{F_2}={60^0}$,
在△F1F2M中,由余弦定理得:
(2c)2=22+(4c-2)2-2×2(4c-2)cos60°,
解得c=1.则$a=2,b=\sqrt{3}$,
所以椭圆C的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.
证明:(2)由题意可得直线l的斜率存在,
设直线l的方程为y-1=k(x-4),即y=kx+(1-4k),
代入椭圆方程,整理得(3+4k2)x2+(8k-32k2)x+64k2-32k-8=0,
设A(x1,y1),B(x2,y2),
则${x_1}+{x_2}=\frac{{32{k^2}-8k}}{{3+4{k^2}}},{x_1}{x_2}=\frac{{64{k^2}-32k-8}}{{3+4{k^2}}}$.
设Q(x0,y0),由$|{\overrightarrow{AP}}||{\overrightarrow{QB}}|=|{\overrightarrow{AQ}}||{\overrightarrow{PB}}|$,得:
(4-x1)(x0-x2)=(x1-x0)(4-x2)(考虑线段在x轴上的射影即可),
∴8x0=(4+x0)(x1+x2)-2x1x2
于是$8{x_0}=({4+{x_0}})\frac{{32{k^2}-8k}}{{3+4{k^2}}}-2×\frac{{64{k^2}-32k-8}}{{3+4{k^2}}}$,
整理得3x0-2=(4-x0)k,(*)
又$k=\frac{{{y_0}-1}}{{{x_0}-4}}$,代入(*)式得3x0+y0-3=0,
∴点Q总在直线3x+y-3=0上.

点评 本题考查椭圆方程的求法,考查点总在定直线上的证明,考查直线方程的求法,考查椭圆、直线方程、向量、韦达定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.下面的程序运行后,输出的结果为4,1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.“五一”假期期间,某餐厅对选择A、B、C三种套餐的顾客进行优惠.对选择A、B套餐的顾客都优惠10元,对选择C套餐的顾客优惠20元.根据以往“五一”假期期间100名顾客对选择A、B、C三种套餐的情况得到下表:
选择套餐种类ABC
选择每种套餐的人数502525
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量X表示两位顾客所得优惠金额的综合,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义函数max$\left\{{f(x),g(x)}\right\}=\left\{{\begin{array}{l}{f(x)({f(x)≥g(x)})}\\{g(x)({f(x)<g(x)})}\end{array}}$,则max{sinx,cosx}的最小值为(  )
A.$-\sqrt{2}$B.$\sqrt{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.我国古代“伏羲八封图”的部分与二进制和十进制的互化关系如下表,依据表中规律,A、B处应分别填写110,6.
八卦
二进制000001010011A
十进制0123B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在ABC中,角A,B,C的对边分别是a,b,c,已知2acosA=ccosB+bcosC.
(Ⅰ)求cosA的值;
(Ⅱ)若a=1,cos2$\frac{B}{2}$+cos2$\frac{C}{2}$=1+$\frac{\sqrt{3}}{4}$,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示是一个三棱锥的三视图,则此三棱锥的外接球的体积为(  )
A.$\frac{4}{3}π$B.$\frac{{\sqrt{3}}}{2}π$C.$\frac{{5\sqrt{5}}}{6}π$D.$\sqrt{6}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列说法正确的有②③④.(填正确命题的序号)
①用R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$刻画回归效果,当R2越大时,模型的拟合效果越差;反之,则越好;
②可导函数f(x)在x=x0处取得极值,则f′(x0)=0;
③归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理;
④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用数学归纳法证明1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n-1}$<n(n∈N*,n>1),第一步应验证不等式(  )
A.1+$\frac{1}{2}$<2B.1+$\frac{1}{2}$+$\frac{1}{3}$<3C.1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$<3D.1+$\frac{1}{2}$+$\frac{1}{3}$<2

查看答案和解析>>

同步练习册答案