3£®ÏÂÁÐ˵·¨ÕýÈ·µÄÓТڢۢܣ®£¨ÌîÕýÈ·ÃüÌâµÄÐòºÅ£©
¢ÙÓÃR2=1-$\frac{\sum_{i=1}^{n}£¨{y}_{i}-\stackrel{¡Ä}{{y}_{i}}£©^{2}}{\sum_{i=1}^{n}£¨{y}_{i}-\overline{y}£©^{2}}$¿Ì»­»Ø¹éЧ¹û£¬µ±R2Ô½´óʱ£¬Ä£Ð͵ÄÄâºÏЧ¹ûÔ½²î£»·´Ö®£¬ÔòÔ½ºÃ£»
¢Ú¿Éµ¼º¯Êýf£¨x£©ÔÚx=x0´¦È¡µÃ¼«Öµ£¬Ôòf¡ä£¨x0£©=0£»
¢Û¹éÄÉÍÆÀíÊÇÓÉÌØÊâµ½Ò»°ãµÄÍÆÀí£¬¶øÑÝÒïÍÆÀíÊÇÓÉÒ»°ãµ½ÌØÊâµÄÍÆÀí£»
¢Ü×ۺϷ¨Ö¤Ã÷ÊýѧÎÊÌâÊÇ¡°ÓÉÒòË÷¹û¡±£¬·ÖÎö·¨Ö¤Ã÷ÊýѧÎÊÌâÊÇ¡°Ö´¹ûË÷Òò¡±£®

·ÖÎö ¢Ù¿ÉÓÉÏà¹ØÖ¸ÊýµÄ¸ÅÄîÅжϣ»¢Ú¢Û¢ÜÓɵ¼Êý£¬ÍÆÀí£¬×ۺϷ¨ºÍ·´Ö¤·¨µÄ¸ÅÄîÅжϼ´¿É£®

½â´ð ½â£º¢Ù£®Ïà¹ØÖ¸ÊýR2Ô½´ó£¬ÔòÏà¹ØÐÔԽǿ£¬Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£® ´íÎó£»
¢Ú£®¿Éµ¼º¯Êýf£¨x£©ÔÚx=x0´¦È¡µÃ¼«Öµ£¬Ôòf¡ä£¨x0£©=0£»ÏÔÈ»ÕýÈ·£»
¢Û¹éÄÉÍÆÀíÊÇÓÉÌØÊâµ½Ò»°ãµÄÍÆÀí£¬¶øÑÝÒïÍÆÀíÊÇÓÉÒ»°ãµ½ÌØÊâµÄÍÆÀí£¬ÓɹéÄÉÍÆÀíÓëÑÝÒïÍÆÀíµÄ¸ÅÄî¿ÉÖªÕýÈ·£®
¢Ü×ۺϷ¨Ö¤Ã÷ÊýѧÎÊÌâÊÇ¡°ÓÉÒòË÷¹û¡±£¬·ÖÎö·¨Ö¤Ã÷ÊýѧÎÊÌâÊÇ¡°Ö´¹ûË÷Òò¡±£¬ÓɸÅÄî¿ÉÖªÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®

µãÆÀ ±¾Ì⿼²éÁËÏà¹ØÖ¸Êý£¬µ¼Êý£¬¹éÄÉÍÆÀí£¬ÑÝÒïÍÆÀí£¬×ۺϷ¨ºÍ·ÖÎö·¨µÄ¸ÅÄÊôÓÚ»ù´¡ÌâÐÍ£¬Ó¦ÊìÁ·ÕÆÎÕ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ð¡Àö½ñÌìÍí×Ôϰ׼±¸¸´Ï°ÀúÊ·¡¢µØÀí»òÕþÖÎÖеÄÒ»¿Æ£¬ËýÓÃÊýѧÓÎÏ·µÄ½á¹ûÀ´¾ö¶¨Ñ¡ÄÄÒ»¿Æ£¬ÓÎÏ·¹æÔòÊÇ£ºÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãOΪÆðµã£¬ÔÙ·Ö±ðÒÔP1£¨-1£¬0£©£¬P2£¨-1£¬1£©£¬P3£¨0£¬1£©£¬P4£¨1£¬1£©£¬P5£¨1£¬0£©Õâ5¸öµãΪÖյ㣬µÃµ½5¸öÏòÁ¿£¬ÈÎÈ¡ÆäÖÐÁ½¸öÏòÁ¿£¬¼ÆËãÕâÁ½¸öÏòÁ¿µÄÊýÁ¿»ýy£¬Èôy£¾0£¬¾Í¸´Ï°ÀúÊ·£¬Èôy=0£¬¾Í¸´Ï°µØÀí£¬Èôy£¼0£¬¾Í¸´Ï°ÕþÖΣ®
£¨1£©Ð´³öyµÄËùÓпÉÄÜȡֵ£»
£¨2£©ÇóСÀö¸´Ï°ÀúÊ·µÄ¸ÅÂʺ͸´Ï°µØÀíµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬×ó¡¢ÓÒ½¹µã·Ö±ðΪԲF1¡¢F2£¬MÊÇCÉÏÒ»µã£¬|MF1|=2£¬ÇÒ$|{\overrightarrow{M{F_1}}}||{\overrightarrow{M{F_2}}}|=-2\overrightarrow{M{F_1}}•\overrightarrow{{F_2}M}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©µ±¹ýµãP£¨4£¬1£©µÄ¶¯Ö±ÏßlÓëÍÖÔ²CÏཻÓÚ²»Í¬Á½µãA£¬Bʱ£¬Ïß¶ÎABÉÏÈ¡µãQ£¬ÇÒQÂú×ã$|{\overrightarrow{AP}}||{\overrightarrow{QB}}|=|{\overrightarrow{AQ}}||{\overrightarrow{PB}}|$£¬Ö¤Ã÷µãQ×ÜÔÚij¶¨Ö±ÏßÉÏ£¬²¢Çó³ö¸Ã¶¨Ö±Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏCAB=45¡ã£¬¡ÏCBA=30¡ã£¬CD¡ÍAB£¬DE¡ÍAC£¬DF¡ÍBC£®

£¨1£©Ö¤Ã÷£ºA£¬E£¬F£¬BËĵ㹲Բ£»
£¨2£©Çó$\frac{EF}{AB}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=a£¬${a_{n+1}}=£¨2|{sin\frac{n¦Ð}{2}}|-1£©{a_n}+2n$£®
£¨¢ñ£©Çëд³öa2£¬a3£¬a4£¬a5µÄÖµ£»
£¨¢ò£©²ÂÏëÊýÁÐ{an}µÄͨÏʽ£¬²»±ØÖ¤Ã÷£»
£¨¢ó£©ÇëÀûÓ㨢ò£©ÖвÂÏëµÄ½áÂÛ£¬ÇóÊýÁÐ{an}µÄǰ120ÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-4t+\frac{11}{3}}\\{y=3t-1}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²NµÄ·½³ÌΪ¦Ñ2-6¦Ñsin¦È=-8
£¨1£©ÇóÔ²NµÄÔ²ÐÄNµÄ¼«×ø±ê£»
£¨2£©ÅжÏÖ±ÏßlÓëÔ²NµÄλÖùØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Éèa¡¢b¡Ê£¨0£¬+¡Þ£©£¬Ôò¡°ab£¼ba¡±ÊÇ¡°a£¾b£¾e¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®º¯Êý$f£¨x£©=x{e^x}-\frac{1}{2}{x^2}-x$µÄÁãµã¸öÊýΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ö¤Ã÷²»µÈʽ£º$\sqrt{6}+\sqrt{7}£¾2\sqrt{2}+\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸