精英家教网 > 高中数学 > 题目详情
9.我国古代“伏羲八封图”的部分与二进制和十进制的互化关系如下表,依据表中规律,A、B处应分别填写110,6.
八卦
二进制000001010011A
十进制0123B

分析 由二进制转化为十进制的方法,我们只要依次累加各位数字上的数×该数位的权重,即可得到结果.

解答 解:由八卦图,可得A处是110,110(2)=0+1×2+1×22=2+4=6.
故答案为110,6.

点评 二进制转换为十进制的方法是依次累加各位数字上的数×该数位的权重,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=a2-cos x,则f′(x)等于sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中不是奇函数的是(  )
A.$y=\frac{{({{a^x}+1})x}}{{{a^x}-1}}({a>0,a≠1})$B.$y=\frac{{{a^x}-{a^{-x}}}}{2}({a>0,a≠1})$
C.$y=\left\{\begin{array}{l}1,({x>0})\\-1,({x<0})\end{array}\right.$D.$y={log_a}\frac{1+x}{1-x}({a>0,a≠1})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个盒子装有六张卡片,上面分别写着如下六个函数:f1(x)=x3,f2(x)=5|x|,f3(x)=2,f4(x)=$\frac{1}{x}$,f5(x)=sin($\frac{π}{2}$-x),f6(x)=xcosx.
(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,给出抛物线和其对称轴上的四个点P、Q、R、S,则抛物线的焦点是(  )
A.PB.QC.RD.S

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,左、右焦点分别为圆F1、F2,M是C上一点,|MF1|=2,且$|{\overrightarrow{M{F_1}}}||{\overrightarrow{M{F_2}}}|=-2\overrightarrow{M{F_1}}•\overrightarrow{{F_2}M}$.
(1)求椭圆C的方程;
(2)当过点P(4,1)的动直线l与椭圆C相交于不同两点A,B时,线段AB上取点Q,且Q满足$|{\overrightarrow{AP}}||{\overrightarrow{QB}}|=|{\overrightarrow{AQ}}||{\overrightarrow{PB}}|$,证明点Q总在某定直线上,并求出该定直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l:$\left\{\begin{array}{l}{x=a+tsinα}\\{y=b+tcosα}\end{array}\right.$(t为参数)
(1)当α=$\frac{π}{3}$时,求直线l的斜率;
(2)若P(a,b)是圆O:x2+y2=4内部一点,l与圆O交于A、B两点,且|PA|,|OP|,|PB|成等比数列,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=a,${a_{n+1}}=(2|{sin\frac{nπ}{2}}|-1){a_n}+2n$.
(Ⅰ)请写出a2,a3,a4,a5的值;
(Ⅱ)猜想数列{an}的通项公式,不必证明;
(Ⅲ)请利用(Ⅱ)中猜想的结论,求数列{an}的前120项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.凸十边形的对角线的条数为(  )
A.10B.35C.45D.90

查看答案和解析>>

同步练习册答案