精英家教网 > 高中数学 > 题目详情
8.已知logx(x2-3x+3)=1,则x=3.

分析 根据题意可得$\left\{\begin{array}{l}{{x}^{2}-3x+3>0}\\{x>0且x≠1}\\{{x}^{2}-3x+3=x}\end{array}\right.$,解得即可.

解答 解:由logx(x2-3x+3)=1,得到$\left\{\begin{array}{l}{{x}^{2}-3x+3>0}\\{x>0且x≠1}\\{{x}^{2}-3x+3=x}\end{array}\right.$,
解得x=3,
故答案为:3.

点评 本题考查了对数方程的解法,关键是掌握对数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)满足f(x+1)=lg(2+x)-lg(-x).
(1)求函数f(x)的解析式及定义域;
(2)解不等式f(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(1,$\frac{3}{2}$),且左焦点为F1(-1,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左右顶点分别为A、B,P为椭圆C上一动点,PA,PB分别交直线x=4于点D、E.
(1)求D、E两点纵坐标的乘积;
(2)若点N($\frac{3}{2}$,0),试判断点N与以DE为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.己知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则f(x1),f(x2)的大小关系为f(x1)<f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列5个关系:①{0}∈{0,1,2};②∅?{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤1∈{x|x⊆{1,2}},其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(普通中学做)已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P(0,2),离心率e=$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的方程;
(2)试问是否存在直线l:y=kx-$\frac{4}{3}$与椭圆C相交于不同的两点M,N,且|PM|=|PN|?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设点A1(-$\sqrt{2}$,0)和点A2($\sqrt{2}$,0),直线A1M、A2M相交于点M,且它们的斜率之积是-$\frac{1}{2}$.设M的轨迹为C,过点F(1,0)作直线l交C于P、Q两点.
(1)求点M的轨迹方程;
(2)求|PQ|的最小值;
(3)是否存在点N,使得以线段PQ为直径的圆过该定点,若存在,求出定点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{e}^{x}}{x-m}$.
(Ⅰ)讨论函数y=f(x)在x∈(m,+∞)上的单调性;
(Ⅱ)若m∈(0,$\frac{1}{2}$),则当x∈[m,m+1]时,函数y=f(x)的图象是否总在函数g(x)=x2+x的图象上方?请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆C:(x+1)2+(y-2)2=2关于直线2ax+by+6=0对称,则点(a,b)与圆心C的距离的最小值为3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案