【题目】下列各题中,哪些p是q的充要条件?
(1)p:四边形是正方形,q:四边形的对角线互相垂直且平分;
(2)p:两个三角形相似,q:两个三角形三边成比例;
(3),,;
(4)是一元二次方程的一个根,.
【答案】(2)(4)
【解析】
根据所给命题,判断出能否得到,从而得到p是否是q的充要条件,得到答案.
(1)p:四边形是正方形,q:四边形的对角线互相垂直且平分,因为对角线互相垂直且平分的四边形不一定是正方形,也可能为菱形,所以,所以p不是q的充要条件.
(2)p:两个三角形相似,q:两个三角形三边成比例,因为“若p,则q”是相似三角形的性质定理,“若q,则p”是相似三角形的判定定理,所以它们均为真命题,即,所以p是q的充要条件.
(3),,,因为时,,不一定成立,也可能,,所以,所以p不是q的充要条件.
(4)是一元二次方程的一个根,,因为“若p,则q”与“若q,则p”均为真命题,即,所以p是q的充要条件.
所以(2)(4)中,p是q的充要条件.
科目:高中数学 来源: 题型:
【题目】某地新建一家服装厂,从今年7月份开始投产,并且前4个月的产量分别为万件、万件、万件、万件.由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好.为了推销员在推销产品时接收订单不产生过多或过少的情况,需要估测以后几个月的产量,假如你是厂长,就月份x、产量y给出四种函数模型:,,,.你将利用零一种模型去估算以后几个月的产量?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求证:
(1)角为第二或第三象限角的充要条件是;
(2)角为第三或第四象限角的充要条件是;
(3)角为第一或第四象限角的充要条件是;
(4)角为第一或第三象限角的充要条件是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修:不等式选讲
已知函数f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都要网络报价一次,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加年月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的数据,统计了最近个月参与竞拍的人数(见下表):
月份 | |||||
月份编号 | |||||
竞拍人数(万人) |
(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数(万人)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测年月份参与竞拍的人数.
(2)某市场调研机构从拟参加年月份车牌竞拍人员中,随机抽取了人,对他们的拟报价价格进行了调查,得到如下频数分布表和频率分布直方图:
报价区间(万元) | |||||||
频数 |
(i)求、的值及这位竞拍人员中报价大于万元的概率;
(ii)若年月份车牌配额数量为,假设竞拍报价在各区间分布是均匀的,请你根据以上抽样的数据信息,预测(需说明理由)竞拍的最低成交价.
参考公式及数据:①回归方程,其中,;
②,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线顶点在原点,焦点在x轴上,且过点(4,4),焦点为F.
(1)求抛物线的焦点坐标和标准方程;
(2)P是抛物线上一动点,M是PF的中点,求M的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com