已知圆C:x2+(y-2)2=5,直线l:mx-y+1=0.
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)若圆C与直线l相交于A,B两点,求弦AB的中点M的轨迹方程.
(1)见解析 (2)x2+(y-
)2=![]()
【解析】(1)解法一:直线mx-y+1=0恒过定点(0,1),且点(0,1)在圆C:x2+(y-2)2=5的内部,
所以直线l与圆C总有两个不同交点.
解法二:联立方程
,消去y并整理,得
(m2+1)x2-2mx-4=0.
因为Δ=4m2+16(m2+1)>0,所以直线l与圆C总有两个不同交点.
解法三:圆心C(0,2)到直线mx-y+1=0的距离d=
=
≤1<
,
所以直线l与圆C总有两个不同交点.
(2)设A(x1,y1),B(x2,y2),M(x,y),联立直线与圆的方程得(m2+1)x2-2mx-4=0,
由根与系数的关系,得x=
=
,
由点M(x,y)在直线mx-y+1=0上,当x≠0时,得m=
,代入x=
,得x[(
)2+1]=
,
化简得(y-1)2+x2=y-1,即x2+(y-
)2=
.
当x=0,y=1时,满足上式,故M的轨迹方程为x2+(y-
)2=
.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-9圆锥曲线的综合问题(解析版) 题型:选择题
已知椭圆
+
=1的焦点是F1,F2,如果椭圆上一点P满足PF1⊥PF2,则下面结论正确的是( )
A.P点有两个 B.P点有四个
C.P点不一定存在 D.P点一定不存在
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-6双曲线(解析版) 题型:填空题
已知双曲线的中心在原点,焦点在x轴上,它的一条渐近线与x轴的夹角为α,且
<α<
,则双曲线的离心率的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-5椭圆(解析版) 题型:选择题
椭圆
+
=1(a>b>0)的两顶点为A(a,0),B(0,b),且左焦点为F,△FAB是以角B为直角的直角三角形,则椭圆的离心率e为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-4直线与圆、圆与圆的位置关系(解析版) 题型:填空题
设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-4直线与圆、圆与圆的位置关系(解析版) 题型:选择题
直线y=x+b与曲线x=
有且仅有一个公共点,则b的取值范围是( )
A.{b|b=±
}
B.{b|-1<b≤1或b=-
}
C.{b|-1≤b≤
}
D.{b|-
<b<1}
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:选择题
若圆O的半径为3,直径AB上一点D使
=3
,E、F为另一直径的两个端点,则
=( )
A.-3 B.-4 C.-6 D.-8
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-2直线的交点坐标与距离公式(解析版) 题型:选择题
将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=( )
A.4 B.6 C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:选择题
在正方体ABCD-A1B1C1D1中,M、N分别为棱AA1和BB1的中点,则sin〈
,
〉的值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com