精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-
12
x2+bx+c
,且f(x)在x=1处取得极值.
(1)求b的值;
(2)若当x∈[1,2]时,f(x)<c2恒成立,求c的取值范围;
(3)c为何值时,曲线y=f(x)与x轴仅有一个交点.
分析:(1)由已知中函数f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1处取得极值,我们求出f′(x)的解析式,根据f′(1)=0,我们易可构造一个关于b的方程,解方程即可得到b的值;
(2)利用导数法,我们可以判断出当x∈[1,2]时,函数f(x)的单调性,进而求出f(x)在区间[1,2]的最大值,根据当x∈[1,2]时,f(x)<c2恒成立,可以构造一个关于c的不等式,解不等式即可得到c的取值范围;
(3)若曲线y=f(x)与x轴仅有一个交点,则y=f(x)的极大值小于0,或y=f(x)的极小值大于0,进而构造关于x的不等式,解不等式即可求出c的取值范围.
解答:解:(1)∵f(x)=x3-
1
2
x2+bx+c

∴f′(x)=3x2-x+b,….(1分)
∵f(x)在x=1处取极值,
∴f′(1)=0             …(2分)
∴3-1+b=0
即b=-2          …(3分)
(2)由(1)可得f′(x)=3x2-x-2
令f′(x)=0,则x=-
2
3
,或x=1           …..(4分)
∵x∈(-∞,-
2
3
)时,f′(x)>0,f(x)单调递增;
当x∈(-
2
3
,1)时,f′(x)<0,f(x)单调递减;
当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.
∴在闭区间[-1,2]上,f(x)单调递增    …(5分)
∴在闭区间[-1,2]上,f(x)的最大值为f(2)=2+c<c2,…(6分)
∴c>2,或c<-1                       …(7分)
(3)由(1)、(2)可知:
f(x)的极大值为f(-
2
3
)=
22
27
+c

f(x)的极小值为f(1)=c-
3
2
     …(8分)
∵当f(-
2
3
)<0,或f(1)>0时,曲线y=f(x)与x轴仅有一个交点   ….(9分)
22
27
+c
<0,或c-
3
2
>0,
即c<-
22
27
,或c>
3
2
时,
曲线y=f(x)与x轴仅有一个交点…(10分)
点评:本题考查的知识点是利用导数求闭区间上函数的最值,利用导数研究函数的单调性,其中根据函数的解析式,求出导函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案