精英家教网 > 高中数学 > 题目详情
10.函数f(x)=$\sqrt{lg(4-x)}$的定义域为(-∞,3],值域为[0,+∞).

分析 根据函数的结构列出限制条件,求解不等式组得到定义域,利用函数设t=lg(4-x),t≥0,y=$\sqrt{t}$求解即可.

解答 解:由题意知$\left\{\begin{array}{l}{lg(4-x)≥0}\\{4-x>0}\end{array}\right.$,
解得:x≤3,
所以函数的定义域为(-∞,3],
∵设t=lg(4-x),t≥0,
∴y=$\sqrt{t}$,
y≥0,
故答案为(-∞,3];[0,+∞).

点评 本题考察函数定义域的求解,属基础题.其中有对数不等式的求解,注意应先将实数化为同底的对数,再利用对数函数的单调性求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2-2x+3,当0≤x≤m时,该函数有最大值3,最小值2,则实数m的取值范围是(  )
A.[1,+∞)B.[0,2]C.(-∞,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,则输出i的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{9x}{a{x}^{2}+1}$(a>0).
(1)若a>$\frac{2}{3}$,且曲线y=f(x)在点(2,f(2))处的切线的斜率为-$\frac{27}{25}$,求函数f(x)的单调区间;
(2)求证:当x>1时,f(x)>$\frac{9+lnx}{a{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数极限:$\underset{lim}{x→4}$$\frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=e2x-alnx,x∈(0,1).
(1)讨论函数f(x)的导函数f′(x)的零点个数;
(2)当a=1时,证明:f(x)>$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆的圆心为坐标原点,且经过点(-1,$\sqrt{3}$).
(1)求圆的方程;
(2)若直线l1:x-$\sqrt{3}$y+b=0与此圆有且只有一个公共点,求b的值;
(3)求直线l2:x-$\sqrt{3}y+2\sqrt{3}$=0被此圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在等腰梯形ABCD中(如图),AB∥CD,DE⊥AB,AB=5,CD=3,∠DAB=$\frac{π}{3}$,现沿DE将等腰梯形折成直二面角.
(1)证明:BC⊥平面ACE;
(2)求平面ADE与平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=loga(2x+3)+2(a>0,a≠1),则函数y=f(-x)的图象必过定点(1,2).

查看答案和解析>>

同步练习册答案