分析 若b=2$\sqrt{3}$,利用正弦定理可求sinC,利用大边对大角可求C,进而可求A,利用三角形面积公式即可得解;若满足条件的三角形恰有两个,由已知条件,根据正弦定理用b表示出sinC,由∠B的度数及正弦函数的图象可知满足题意△ABC有两个C的范围,然后根据C的范围,利用特殊角的三角函数值即可求出sinC的范围,进而求出b的取值范围.
解答 解:在△ABC中,∵b=2$\sqrt{3}$,B=60°,c=2,
∴利用正弦定理可得:sinC=$\frac{csinB}{b}$=$\frac{2×\frac{\sqrt{3}}{2}}{2\sqrt{3}}$=$\frac{1}{2}$,
∵c<b,可得:C<B=60°,
∴C=30°,A=180°-B-C=90°,
∴S△ABC=$\frac{1}{2}$bc=$\frac{1}{2}×2×2\sqrt{3}$=2$\sqrt{3}$.
若满足条件的三角形恰有两个,
由正弦定理得:$\frac{c}{sinC}=\frac{b}{sinB}$,即$\frac{2}{sinC}=\frac{b}{\frac{\sqrt{3}}{2}}$,
变形得:sinC=$\frac{\sqrt{3}}{b}$,
由题意得:当C∈(90°,120°)时,满足条件的△ABC有两个,
所以:$\frac{\sqrt{3}}{2}$<$\frac{\sqrt{3}}{b}$<1<1,解得:$\sqrt{3}$<b<2,
则b的取值范围是($\sqrt{3}$,2).
故答案为:2$\sqrt{3}$,($\sqrt{3}$,2).
点评 此题考查了正弦定理及特殊角的三角函数值在解三角形中的应用,要求学生掌握正弦函数的图象与性质,牢记特殊角的三角函数值以及灵活运用三角形的内角和定理这个隐含条件,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{7}{8}$ | D. | $\frac{8}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com