精英家教网 > 高中数学 > 题目详情
10.已知|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|≠0,且关于x的方程x2+|$\overrightarrow{a}$|x+$\overrightarrow{a}$•$\overrightarrow{b}$=0有实根,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的取值范围是(  )
A.[0,$\frac{π}{6}$]B.[$\frac{π}{3}$,π]C.[$\frac{π}{3}$,$\frac{2π}{3}$]D.[$\frac{π}{6}$,π]

分析 令判别式△≥0可得$\overrightarrow{a}•\overrightarrow{b}$≤$\frac{|\overrightarrow{a}{|}^{2}}{4}$,代入夹角公式得出cos<$\overrightarrow{a},\overrightarrow{b}$>的范围,从而得出向量夹角的范围.

解答 解:∵关于x的方程x2+|$\overrightarrow{a}$|x+$\overrightarrow{a}$•$\overrightarrow{b}$=0有实根,
∴|$\overrightarrow{a}$|2-4$\overrightarrow{a}•\overrightarrow{b}$≥0,
∴$\overrightarrow{a}•\overrightarrow{b}$≤$\frac{|\overrightarrow{a}{|}^{2}}{4}$,
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$≤$\frac{|\overrightarrow{a}{|}^{2}}{4|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{1}{2}$,
又0≤<$\overrightarrow{a},\overrightarrow{b}$>≤π,
∴$\frac{π}{3}≤$<$\overrightarrow{a},\overrightarrow{b}$>≤π.
故选B.

点评 本题考查了平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.以下四个命题中其中真命题个数是(  )
①为了了解800名学生的成绩,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为40;
②线性回归直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$恒过样本点的中心($\overline{x}$,$\overline{y}$);
③随机变量ξ服从正态分布N(2,σ2)(σ>0),若在(-∞,1)内取值的概率为0.1,则在(2,3)内的概率为0.4;
④若事件M和N满足关系P(M∪N)=P(M)+P(N),则事件M和N互斥.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,在路边安装路灯,路宽为OD,灯柱OB长为h米,灯杆AB长为1米,且灯杆与灯柱成120°角,路灯采用圆锥形灯罩,其轴截面的顶角为2θ,灯罩轴线AC与灯杆AB垂直.
(1)设灯罩轴线与路面的交点为C,若OC=5$\sqrt{3}$米,求灯柱OB长;
(2)设h=10米,若灯罩轴截面的两条母线所在直线一条恰好经过点O,另一条与地面的交点为E(如图2);
(i)求cosθ的值;
(ii)求该路灯照在路面上的宽度OE的长;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a=5-1.2,b=1.21.1,c=lg$\frac{5}{6}$,则下列结论正确的是(  )
A.a<c<bB.c<b<aC.lna<($\frac{1}{3}$)bD.3a<($\frac{1}{2}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若θ是第二象限的角,试确定$\frac{cos(cosθ)}{cos(sin2θ)}$的值的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为120°,若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),|$\overrightarrow{a}$|=2,则向量$\overrightarrow{b}$在$\overrightarrow{a}$上的投影为(  )
A.$-\frac{{\sqrt{33}}}{8}$B.$\frac{\sqrt{33}+1}{8}$C.-$\frac{\sqrt{33}+1}{8}$D.$\frac{1-\sqrt{33}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设A,B为两个互斥事件,且P(A)>0,P(B)>0,则下列结论正确的是(  )
A.A与B相互独立B.若A,B相互独立,则A,B不互斥
C.A,B既相互独立又互斥D.A,B既不相互独立又不互斥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是(  )
A.有两个内角是钝角B.至少有两个内角是钝角
C.有三个内角是钝角D.没有一个内角是钝角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在数列{an}中,若${a_1}=1,{a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$,则数列{an}的通项公式an=n×2n-1

查看答案和解析>>

同步练习册答案