分析 (1)连结ON,运用切线的性质和切割线定理,结合等腰三角形的性质,即可得证;
(2)延长BO交⊙于点D,连结DN,证得△BOM~△BND,可得对应边成比例,结合勾股定理,计算即可得到所求值.
解答 证明:(1)连结ON,则ON⊥PN,且△OBN为等腰三角形,![]()
则∠OBN=∠ONB,
∵∠PMN=∠OMB=90°-∠OBN,∠PNM=90°-∠ONB,
∴∠PMN=∠PNM,
∴PM=PN.
由条件,根据切割线定理,有PN2=PA•PC,
所以PM2=PA•PC.
解:(2)$OA=\sqrt{3}OM=\sqrt{3}$,
∴OM=1,在Rt△BOM中,$BM=\sqrt{O{B^2}+O{M^2}}=2$.
延长BO交⊙于点D,连结DN,
可得∠BND=∠BOM,∠OBM=∠NBD,
则△BOM~△BND,
于是$\frac{BO}{BN}=\frac{BM}{BD}$,则$\frac{{\sqrt{3}}}{BN}=\frac{2}{{2\sqrt{3}}}$,
∴BN=3,
∴MN=BN-BM=1.
点评 本题考查三角形相似的判定和性质的运用,考查圆的切割线定理和直角三角形的勾股定理的运用,考查推理和运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{4π}{3}$ | C. | 2π | D. | $\frac{8π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2880 | B. | 7200 | C. | 1440 | D. | 60 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}$-y2=1 | B. | $\frac{x^2}{4}$-$\frac{y^2}{2}$=1 | C. | $\frac{x^2}{4}$-$\frac{y^2}{3}$=1 | D. | $\frac{x^2}{4}$-$\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com