精英家教网 > 高中数学 > 题目详情
已知直角梯形ABCD中,AD∥BC,AB⊥AD,∠C=45°,AD=AB=2,把梯形沿BD折起成60°的二面角C′-BD-A.求:  (1)C′到平面ADB的距离;
(2)AC′与BD所成的角.
(1) (2)∠GAC′=60°
(1)过C′作C′G⊥面BAD于G,连结DG.
∵AD="BA=2 " AD⊥AB
∴∠ADB=45°
又∵∠ADC=180°-45°=135°
∴∠BDC=135°-45°=90°
即BD⊥DCBD⊥DC′BG⊥BD ∴∠GDC′=60°
C′G为所求
C′G=C′D·sib60°=2·=
(2)DG=C′D·cos60°=2·=  
又AD="2 " A到BD的距 离AO=AD·sin45°=2α×=
∴AG∥OD,即AG⊥DG,∠GAC′为所求.
tan∠GAC′=
∴∠GAC′=60°
          
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,已知正方形ABCD和梯形ACEF所在的平面互相垂直,
,CE//AF,
(I)求证:CM//平面BDF;
(II)求异面直线CM与FD所成角的大小;
(III)求二面角A—DF—B的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BCM为BC的中点
(Ⅰ)证明:AMPM
(Ⅱ)求二面角PAMD的大小;
(Ⅲ)求点D到平面AMP的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥PABCD的底面是矩形,侧面PAD
是正三角形,且侧面PAD⊥底面ABCDE为侧棱PD的中点.
(I)试判断直线PB与平面EAC的关系
(文科不必证明,理科必须证明);
(II)求证:AE⊥平面PCD
(III)若ADAB,试求二面角APCD
的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五棱锥中,,.
(1)求证:;
(2)求点E到面SCD的距离;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PC⊥平面ABC,PM∥CB,∠ACB=120°,PM=AC=1,BC=2,异面直线AM与直线PC所成的角为60°.
(Ⅰ)求二面角M-AC-B大小的正切值;
(Ⅱ)求三棱锥P-MAC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为1的菱形。侧面PAD是正三角形,其所在侧面垂直底面ABCD,G是AD中点。
(1)求异面直线BG与PC所成的角;
(2)求点G到面PBC的距离;
(3)若E是BC边上的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在多面体ABCDA1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于EF两点,上、下底面矩形的长、宽分别为cdab,且acbd,两底面间的距离为h
(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角的大小;
(Ⅱ)证明:EF∥面ABCD
(Ⅲ)在估测该多面体的体积时,经常运用近似公式V=S中截面·h来计算.已知它的体积公式是V=S上底面+4S中截面+S下底面),试判断VV的大小关系,并加以证明。
(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABCA1B1C1中,底面是等腰直角三角形,ABBC=BB1=3,DA1C1的中点,F在线段AA1上.
(1)AF为何值时,CF⊥平面B1DF
(2)设AF=1,求平面B1CF与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案