精英家教网 > 高中数学 > 题目详情

 已知双曲线的离心率等于2,且经过点M(-2,3),求双曲线的标准方程.


解:若双曲线方程为=1(a>0,b>0),由已知可得=2,即c=2a.又M(-2,3)在双曲线上, ∴=1, ∴ 4b2-9a2=a2b2①.∵ c=2a,∴ b2=3a2,代入①得a2=1,b2=3.

∴ 双曲线方程为x2=1.同理,若双曲线方程为=1,则双曲线方程为=1.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


抛物线y2=-8x的准线方程是________.

查看答案和解析>>

科目:高中数学 来源: 题型:


 如图,已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若,则椭圆的离心率是________.

查看答案和解析>>

科目:高中数学 来源: 题型:


 如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且=0.

(1) 求椭圆E的离心率;

(2) 已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


若双曲线方程为x2-2y2=1,则它的左焦点的坐标为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


双曲线C与椭圆=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:


双曲线=1上一点P到右焦点的距离是实轴两端点到右焦点距离的等差中项,则P点到左焦点的距离为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


设数列{an}的前n项和为Sn.已知a1=1,=an+1n2-n-,n∈N*.

(1) 求a2的值;

(2) 求数列{an}的通项公式;

(3) 证明:对一切正整数n,有+…+<.

查看答案和解析>>

同步练习册答案