精英家教网 > 高中数学 > 题目详情
若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,则双曲线的离心率为(  )
A、
4
3
B、
2
3
3
C、2
D、
2
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由于双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,可得圆心(2,0)到渐近线的距离d=r,利用点到直线的距离公式即可得出.
解答: 解:取双曲线的渐近线y=
b
a
x,即bx-ay=0.
∵双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与(x-2)2+y2=1相切,
∴圆心(2,0)到渐近线的距离d=r,
2b
a2+b2
=1,化为2b=c,
两边平方得c2=4b2=4(c2-a2),化为3c2=4a2
∴e=
c
a
=
2
3
3

故选:B.
点评:本题考查了双曲线的渐近线及其离心率、点到直线的距离公式、直线与圆相切的性质等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把圆周分成四等份,A是其中一个分点,动点P在四个分点上按逆时针方向前进,现在投掷一个质地均匀的正四面体,它的四个面上分别写有1,2,3,4四个数字,P从A点出发,按照正四面体底面上数字前进几个分点,转一周之前连续投掷.
(1)求点P恰好返回A点的概率;
(2)在点P转一周恰能返回A点的所有结果中,求至少需投掷3次点P才能返回A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,且短轴长为2
3
,F1,F2是椭圆的左右两个焦点,若直线l过F2,且倾斜角为45°,交椭圆于A,B两点.
(1)求椭圆C的标准方程.
(2)求△ABF1的周长与面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
1
4
+2x)n展开式中前三项的二项式系数和为37,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲线C表示双曲线,求m的范围;
(2)若曲线C是焦点在x轴上的椭圆,求m的范围;
(3)设m=4,曲线C与y轴交点为A,B(A在B上方),y=kx+4与曲线C交于不同两点M,N,y=1与BM交于G,求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,且经过点P(3,0),a=3b,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

考虑一元二次方程x2+mx+n=0,其中m,n的取值分别等于将一枚骰子连掷两次先后出现的点数,则方程有实根的概率为(  )
A、
19
36
B、
7
18
C、
4
9
D、
17
36

查看答案和解析>>

科目:高中数学 来源: 题型:

有2名老师和4名学生一起照相.
(Ⅰ)全部站成一排,共有多少种不同的排法?
(Ⅱ)全部站成一排,2名老师必须排在一起并且在中间,共有多少种不同的排法?(要求用数字作答)

查看答案和解析>>

同步练习册答案