精英家教网 > 高中数学 > 题目详情
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)取CE的中点G,连结FG、BG.由已知条件推导出四边形GFAB为平行四边形,由此能证明AF∥平面BCE.
(2)由等边三角形性质得AF⊥CD,由线面垂直得DE⊥AF,从而AF⊥平面CDE,由平行线性质得BG⊥平面CDE,由此能证明平面BCE⊥平面CDE
解答: 解(1)证明:取CE的中点G,连FG、BG.
∵F为CD的中点,
∴GF∥DE且GF=
1
2
DE.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又AB=
1
2
DE,∴GF=AB.
∴四边形GFAB为平行四边形,则AF∥BG.
∵AF?平面BCE,BG?平面BCE,
∴AF∥平面BCE.
(2)∵△ACD为等边三角形,F为CD的中点,
∴AF⊥CD.
∵DE⊥平面ACD,AF?平面ACD,
∴DE⊥AF.
又CD∩DE=D,故AF⊥平面CDE.
∵BG∥AF,
∴BG⊥平面CDE.
∵BG?平面BCE,
∴平面BCE⊥平面CDE.
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(其中a≠0)满足下列3个条件:
①f(x)的图象过坐标原点;
②对于任意x∈R都有f(-
1
2
+x)=f(-
1
2
-x)
成立;
③方程f(x)=x有两个相等的实数根,令g(x)=f(x)-|λx-1|(其中λ>0),
(1)求函数f(x)的表达式;
(2)求函数g(x)的单调区间(直接写出结果即可);
(3)研究函数g(x)在区间(0,1)上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a=20.6,b=log22,c=ln0.6,则(  )
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①若A>B,则cosA<cosB;
②“若a+b≥2,则a,b 中至少有一个不小于1”的逆命题;
③“若x2+y2=0,则x,y都为0”的否命题;
④若x+y≠3,则x≠1或y≠2.
其中真命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y为正实数,且满足2x2+8y2+xy=2,则x+2y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,则双曲线的离心率为(  )
A、
4
3
B、
2
3
3
C、2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,且a2+a5=19,a3+a6=25.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an-bn}是首项为2,公比为2的等比数列,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

小王在年初用50万元购买一辆大货车.车辆运营,第一年需支出各种费用6万元,从第二年起,以后每年的费用都比上一年的费用增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第n年的年底出售,其销售价格为25-n万元(国家规定大货车的报废年限为10年).
(1)大货车运输到第几年年底,该车运输累计收入超过总支出?
(2)在第几年年底将大货车出售,能使小王获得的年利润最大?(利润=累计收入+销售收入-总支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-|x|+a,若存在x1,x2,x3,x4(x1,x2,x3,x4互不相同),使f(x1)=f(x2)=f(x3)=f(x4)=1,则a的取值范围是
 

查看答案和解析>>

同步练习册答案