精英家教网 > 高中数学 > 题目详情
设函数f(x)=
3
sinxcosx+cos2x+a

(1)写出函数f(x)的最小正周期及单调递减区间;
(2)当x∈[-
π
6
π
3
]
时,函数f(x)的最大值与最小值的和为
3
2
,求a的值.
解(1)f(x)=
3
2
sin2x+
1+cos2x
2
+a=sin(2x+
π
6
)+a+
1
2
,(2分)
∴T=π.(4分)
π
2
+2kπ≤2x+
π
6
2
+2kπ,得
π
6
+kx≤x≤
3
+kπ

故函数f(x)的单调递减区间是[
π
6
+kπ,
3
+kπ](k∈Z)
.                 (6分)
(2)∵-
π
6
≤x≤
π
3
,∴-
π
6
≤2x+
π
6
6
.∴-
1
2
≤sin(2x+
π
6
)≤1
.(8分)
x∈[-
π
6
π
3
]
时,原函数的最大值与最小值的和(1+a+
1
2
)+(-
1
2
+a+
1
2
)
=
3
2
,∴a=0(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=3sin(ωx+
π
6
)
,(ω>0),x∈(-∞,+∞),且以
π
2
为最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
α
4
+
π
12
)=
9
5
,求sinαtanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3sin(2x-
π
3
)
的图象为C,给出下列命题:
①图象C关于直线x=
11
12
π
对称;
②函数f(x)在区间(-
π
12
12
)
内是增函数;
③函数f(x)是奇函数;
④图象C关于点(
π
3
,0)
对称.
⑤|f(x)|的周期为π
其中,正确命题的编号是
①②
①②
.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)在一次人才招聘会上,有A、B、C三种不同的技工面向社会招聘.已知某技术人员应聘A、B、C三种技工被录用的概率分别是0.8、0.5、0.2 (允许受聘人员同时被多种技工录用).
(I)求该技术人员被录用的概率;
(Ⅱ)设X表示该技术人员被录用的工种数与未被录用的工种数的积.
i) 求X的分布列和数学期望;
ii)“设函数f(x)=3sin
(x+X)4
π,x∈R
是偶函数”为事件D,求事件D发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3sin(ωx+
π
6
)
,ω>0,x∈(-∞,+∞),且以
π
2
为最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=-3,b=1,△ABC的面积为
3
2
  ,求
b+c
sinB+sinC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
sin(2x+
π
6
)
(x∈R).
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)是否可以由函数f(x)的图象经过平移变换得到一个偶函数的图象?若可以,说明怎样变换得到;若不可以,说明理由.

查看答案和解析>>

同步练习册答案