精英家教网 > 高中数学 > 题目详情

【题目】如图,点E为正方形ABCDCD上异于点CD的动点,将△ADE沿AE翻折成△SAE,在翻折过程中,下列三个说法中正确的个数是(

①存在点E和某一翻折位置使得AE∥平面SBC

②存在点E和某一翻折位置使得SA⊥平面SBC

③二面角SABE的平面角总是小于2SAE

A.0B.1C.2D.3

【答案】B

【解析】

对于①,四边形ABCE为梯形,所以AEBC必然相交;对于②,假设SA平面SBC,可推得矛盾;对于③,当将ADE沿AE翻折使得平面SAE⊥平面ABCE时,二面角SABE最大,在平面SAE内,作出一个角等于二面角SABE的平面角;由角所在三角形的一个外角,它是不相邻的两个内角之和,结合图形,即可判定③.

对于①,四边形ABCE为梯形,所以AEBC必然相交,故①错误;

对于②,假设SA平面SBCSC平面SBC,所以SASC,又SASESESCS,所以SA⊥平面SCE,所以平面SCE∥平面SBC,这与平面SBC平面SCESC矛盾,

故假设不成立,即②错误;

对于③,当将ADE沿AE翻折使得平面SAE⊥平面ABCE时,二面角SABE最大,如图,在平面SAE内,作SOAE,垂足为O,∴SO⊥平面ABCEAB平面ABCE

所以SOAB

OFAB,垂足为F,连接SFSOOFO,则AB⊥平面SFO,所以ABSF,则∠SFG即为二面角SABE的平面角;

在直线AE上取一点,使得OOF,连接S,则∠SO=∠SFO

由图形知,在SA中,SA,所以∠AS<∠SAE;而∠SO=∠SAE+AS

故∠SO2SAE

即∠SFO2SAE.故③正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥中,,则三棱锥外接球的体积的最小值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列同时满足条件:①存在互异的使得为常数);

②当时,对任意都有,则称数列为双底数列.

(1)判断以下数列是否为双底数列(只需写出结论不必证明);

; ②; ③

(2)设若数列是双底数列,求实数的值以及数列的前项和

(3)设,是否存在整数,使得数列为双底数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

求证:恒成立;

,若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角ABC的对边分别为abc,且

1)求A

2)若,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生态农庄有一块如图所示的空地,其中半圆O的直径为300米,A为直径延长线上的点,米,B为半圆上任意一点,以AB为一边作等腰直角,其中BC为斜边.

;,求四边形OACB的面积;

现决定对四边形OACB区域地块进行开发,将区域开发成垂钓中心,预计每平方米获利10元,将区域开发成亲子采摘中心,预计每平方米获利20元,则当为多大时,垂钓中心和亲子采摘中心获利之和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中,,四边形为矩形,且平面.

(1)求证:平面

(2)点在线段上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥SABCD的底面为矩形,SA⊥底面ABCD,点E在线段BC上,以AD为直径的圆过点 E.若SAAB=3,则△SED面积的最小值为_____

查看答案和解析>>

同步练习册答案