精英家教网 > 高中数学 > 题目详情
函数.
(1)令,求的解析式;
(2)若上恒成立,求实数的取值范围;
(3)证明:.
(1);(2)实数的取值范围;(3)详见解析.

试题分析:(1)因为,故, ,,,由此可得,是以4为周期,重复出现,故;(2)若上恒成立,求实数的取值范围,由得,,即上恒成立,令,只需求出上的最小值即可,可利用导数法来求最小值;(3)证明:,由(2)知:,即,这样得到,令,叠加即可证出.
试题解析:(1)…周期为4,
.
(2)方法一:即上恒成立,
时,
时,,设


,则增;减.
,所以上存在唯一零点,设为,则
,所以处取得最大值,在处取得最小值,.
综上:.
方法二:设.
.
时,上恒成立,成立,故
时,上恒成立,,无解.
时,则存在使得增,减,
,解得,故.
综上:.
(3)由(2)知:
.
时,


=
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数),其中
(1)若曲线在点处相交且有相同的切线,求的值;
(2)设,若对于任意的,函数在区间上的值恒为负数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知的图象在处有相同的切线,
=     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数为奇函数,其图象的一条切线方程为,则b的值为  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点且与曲线相切的直线方程为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求抛物线y=x2上点到直线x-y-2=0的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数处的切线方程是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线y=log2x的一条切线的斜率为,则切点坐标为________.

查看答案和解析>>

同步练习册答案