精英家教网 > 高中数学 > 题目详情
16.(x2+x+1)(1-x)6展开式中x2的系数为10.

分析 (x2+x+1)(1-x)6=(x2+x+1)(1-6x+${∁}_{6}^{2}{x}^{2}$+…)即可得出.

解答 解:(x2+x+1)(1-x)6=(x2+x+1)(1-6x+${∁}_{6}^{2}{x}^{2}$+…)
展开式中x2的系数为1-6+${∁}_{6}^{2}$=10.
故答案为:10.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知正项数列{an}的前n项和为Sn,且2Sn=(an-1)(an+2).
(1)求证:不论λ取何值,数列{an+λan+1}总是等差数列,并求此数列的公差;
(2)设数列$\{\frac{{(n-1)•{2^n}}}{{n{a_n}}}\}$的前n项和为Tn,试比较Tn与$\frac{{{2^{n+1}}(18-n)-2n-2}}{n+1}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4x2-mx+1在(-∞,-2)上递减,在[-2,+∞)上递增,求f(x)在[1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若(cosα+2sinα)2=5,则tanα=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的A品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温x(°C)与该奶茶店的A品牌饮料销量y(杯),得到如下表数据:
日期1月11日1月12日1月13日1月14日1月15日
平均气温x(℃)91012118
销量y(杯)2325302621
(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组书记恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组书记,求出y关于x的线性回归方程式$\widehaty=\widehatbx+\widehata$.
(Ⅲ)根据(Ⅱ)所得的线性回归方程,若天气预报1月16号的白天平均气温为7(℃),请预测该奶茶店这种饮料的销量.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点M在角θ终边的延长线上,且|OM|=2,则M的坐标为(  )
A.(2cosθ,2sinθ)B.(-2cosθ,2sinθ)C.(-2cosθ,-2sinθ)D.(2cosθ,-2sinθ)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若sinA:sinB:sinC=2:3:4,则最大角的余弦值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行右面的程序框图,如果输入m=72,n=30,则输出的n是(  )
A.12B.6C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某高中有学生2000人,其中高一年级有760人,若从全校学生中随机抽出1人,抽到的学生是高二学生的概率为0.37,现采用分层抽(按年级分层)在全校抽取20人,则应在高三年级中抽取的人数为5.

查看答案和解析>>

同步练习册答案